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ABSTRACT

Hough-based voting approaches have been successfully ap-
plied to object detection. While these methods can be ef-
ficiently implemented by random forests, they estimate the
probability for an object hypothesis independently for each
feature. In this work, we address this problem by group-
ing features in a local neighborhood to obtain a better es-
timate of the probability. To this end, we propose oblique
classification-regression forests that combine features of dif-
ferent trees. We further investigate the benefit of combining
independent and grouped features and evaluate the approach
on RGB and RGB-D datasets.

Index Terms— feature grouping, random forest

1. INTRODUCTION

Hough-based voting approaches or implicit shape models [1,
2, 3] model an object by a codebook of features and their
spatial offsets to the center or root of the object. For object
detection, features of the test image are matched to the code-
book where each codebook entry models a distribution over
the space of object hypotheses. This might not only encode
the class and bounding box of the object, but could also in-
clude additional information like depth [4].

There is a significant body of work on voting approaches
that rely on contour features. The approach in [5] groups con-
tour features and dynamically finds their optimal transforma-
tions to associate with training data during testing. In [6],
a codebook of recurring contour-pairs is learned from posi-
tive examples and an active appearance model for the object
boundary is used for detection. During testing, Hough voting
is performed by contour-pairs to identify hypotheses. How-
ever, the lack of a strong global model requires an additional
verification stage [7]. Methods based on individual contours
are also proposed in [8, 9]. While the former ranks them
against a predefined model to evaluate its voting confidence,
the latter jointly optimizes their location. Similar approaches
are proposed in [10, 11] where discriminative models that op-
timize joint contour locations are learnt. Further, [12] models
objects jointly on contour and appearance information of su-
perpixels. While these methods are shown to work well on
datasets with relatively few examples and where contour in-
formation is relatively easy to extract, they do not generalize
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Fig. 1. Illustration of Hough-based voting with independent
features. Each pixel of an image (a) is assigned to a codeword.
Each color in (b) corresponds to a codeword. For independent
features, each pixel votes according to its assigned codebook
entry (c). For grouped features, the voting depends also on
the assigned codebook entries in its neighbourhood (d).

to datasets where object contours are less reliable.

Consequently, there has been a shift towards employing
more general image features in the recent past. Works in
this context include [13, 14] that introduce a max-margin
framework, to learn voting discriminatively. In addition,
Codebook learning has been addressed in [15, 16] where
random forests [17, 18] that simultaneously solve classifi-
cation and regression problems have been proposed. Other
improvements include self-similarity as a feature [19], global
loss functions for training [20] and ordinal statistics for split-
ting criteria [21]. Further, several models per object class
are learned in [22] to gain performance. These approaches,
however, accumulate votes independently during testing in
order to preserve computational efficiency.

In this work, we address the assumption of feature inde-
pendence. We propose to model the object hypothesis on fea-
tures grouped in a local neighborhood as illustrated in Fig. 1.
Our approach is inspired by [23] that employs semantic tex-
ton forests to solve classification problems like segmentation
and image-categorization tasks very efficiently. In our exper-
iments, we show that the split functions used in segmenta-
tion forests [23] are too weak for the task of object detection.
We therefore propose oblique classification-regression forests
that use a linear combination of feature histograms instead of
a binary feature selection as splitting functions. We further in-
vestigate the benefit of combining independent and grouped
features and evaluate the approach on four RGB and RGB-D
datasets.



2. HOUGH-BASED OBJECT DETECTION

Hough-based voting approaches represent an object by fea-
tures like image patches or contour fragments that appear at
certain locations with respect to its center. In other words,
the probability for an object hypothesis h, which encodes the
label, position, scale and aspect ratio of an object, is written
as:

p(h|I) ≈
∑
y∈Ω

p(h|I(N (y))) (1)

where I(N (y)) represents a collection of features from image
I extracted within a neighborhood of location y. In this re-
gard, we present previous work in Section 2.1 where features
are treated independently by settingN (y) = y. Treatment of
grouped features is then introduced in Section 2.2.

2.1. Independent Features

In this work, we use a Hough forest [15] that combines a clas-
sification and regression objective for training [17].

Training data. Each tree T of a forest is trained on a
set of uniformly sized patches {Pi = (Ii, ci,di)} randomly
sampled from positive and negative examples. A patch is rep-
resented by low level features such as histogram of gradients
and color, denoted by Ii. If extracted from a positive exam-
ple, di denotes the offset of the patch to its center. Otherwise,
the vector is left unused.

Splitting function. Splitting functions fφ(Ii) → {0, 1}
at each non-leaf node split incoming training data and forward
it to the left and right child:

fφ =

{
0 if I l(p)− I l(q) < τ ,
1 otherwise

(2)

where I l(p) and I l(q) are the values of low-level feature l at
pixel locations p and q of patch Pi. The family of splitting
functions is therefore defined by φ = (l,p,q, τ).

Training. Starting from the root node, each node is opt-
mized by selecting the best of a randomly generated pool of
splitting functions. Given a set of training patches P arriving
at a node, the goodness of a split P0 and P1 is measured by

∆Go = Ho(P)−
∑

l∈{0,1}

|Pl|
|P|

Ho(Pl) (3)

where classification or regression objective is chosen ran-
domly. Training continues until the tree reaches a maximal
depth or the size of a resulting split is below a threshold. Each
leaf LT of tree T then holds the class probability p(c|LT ) and
the distribution of the offset vectors p(d|c, LT ) for the posi-
tive class.

Testing. For object detection, the peaks of p(h|I) are de-
tected for various scales s and aspect ratios a. The probability

of a hypothesis for class c and location x is then given by

p(h(c,x, s, a)|I(y)) =
1

|T |
∑
T∈T

p(h(c,x, s, a)|LT (y)),

p(h|LT (y)) = p(d(y,x, s, a)|c, LT (y)) · p(c|LT (y)) (4)

where LT (y) is the leaf corresponding to the patch at location
y and d(y,x, s, a) is the scale and aspect ratio normalized
offset vector between y and x.

2.2. Grouped Features

In order to model p(h|I(N (y))), we learn the probability of
a hypothesis based on all leaf assignments within a neigh-
borhood of y. To this end, we employ a second forest that
is trained on the patch-to-leaf assignments obtained from the
original forest, defined as follows.

Training data. Instead of training a forest on patches
of low-level image features, the forests are now trained on
histograms of leaves, HOL. While the class label ci and the
offset vector di of a group of features Gi = (HOLi, ci,di)
are the same as before, histograms of leaves consist of a his-
togram for each tree HOLT where the entries are given by
LT (N (y)), i.e by the leaf assignments within a rectangular
region around image location y.

Splitting function. The splitting function is given as

fφ =

{
0 if

∑
T∈T wT · HOLT (LT ) < τ ,

1 otherwise
(5)

with φ = ({wT }T∈T , {LT }T∈T , τ). While T selects the his-
togram HOLT , LT is the index of one bin in the histogram.
We investigate two families of splitting functions: Axis
aligned forests utilizing information from a single tree [23]
by forcing wT ∈ {0, 1} and

∑
T wT = 1. We will show that

this family of splitting functions is not powerful enough for
our task. Instead, we propose to set wT ∈ R where features
from different trees are combined in oblique forests [18].

Training and Testing. The training is performed as in
Section 2.1. For testing, the first forest is applied to all scales
and aspect ratios in order to assign each image patch to leaves
{LT }T∈T . The probability of an object hypothesis h is then
given by the two forests:

p(h(c,x, s, a)|I(N (y))) = p(h(c,x, s, a)|{LT (N (y))}T∈T )

=
1

|Tgr|
∑

Tgr∈Tgr

p(h|LTgr ({LT (N (y))}T∈T )) (6)

where T is the first forest with independent features and Tgr
is the second forest with grouped features. The approach for a
single tree is illustrated in Fig. 1. Lastly, we investigate a ver-
sion that combines independent (4) and grouped (6) features
by defining the joint hypothesis as

p(h|I(N (y)), λ) ∝ p(h|I(N (y)))λ · p(h|I(y))1−λ (7)

where λ ∈ [0, 1] steers the impact of the two probabilities.



Table 1. ETHZ dataset: Recall at 0.3/0.4 fppi (%) for spatial
support N and depth of the first forest to generate HOL

support: 7× 7 13× 13
depth: 5 10 16 5 10 16

Applelogos 55.0/60.0 90.0/90.0 75.0/75.0 15.0/15.0 75.0/75.0 10.0/10.0
Bottles 92.8/92.8 89.2/89.2 75.0/75.0 57.1/57.1 71.4/71.4 32.2/32.2
Giraffes 72.3/74.5 78.7/80.8 83.0/83.0 61.7/61.7 83.0/85.1 74.5/74.5
Mugs 61.3/61.3 67.7/74.2 61.3/61.3 45.2/45.2 61.3/61.3 51.6/51.6
Swans 70.6/76.5 70.6/70.6 58.8/58.8 58.8/58.8 82.3/88.2 41.2/58.8

3. EXPERIMENTS

We evaluate our method on four different datasets of increas-
ing difficulty and compare its performance with previously
published results. In each case, we adopt evaluation protocols
of previous works to facilitate comparison.

ETHZ Dataset. The dataset consists of 255 images clas-
sified into five categories: Applelogos, Bottles, Giraffes, Mugs
and Swans. Class Giraffes is the largest, consisting of 87 ex-
amples and Swans the smallest, with 32 examples. We use
the protocol as in [13] where the training set consists of half
the images of a class and an equal number of negative im-
ages sampled uniformly from all other classes. The baseline
with independent features is trained using 5 trees with maxi-
mal depth of 25 and a minimum leaf size of 20 samples. The
features consist of color and histogrammed gradients. The
patches have a fixed size of 16×16 pixels and each tree is
trained on 20k positive and negative patches each. The nega-
tive patch pool is built using equal contributions from negative
examples and the backgound of positive examples. Testing
is performed by spanning a space of three aspect ratios and
five scales. On Average, training a tree took 312s (Intel i7,
3.4GHz) and 1GB RAM and testing took 3.5s per image.

Object detection with grouped features depends on the
spatial support of neighborhood N and on the depth of the
first forest generating HOL. These parameters are fixed by
grid search on tree depth ∈ {5, 10, 16} and spatial support
∈ {7× 7, 13× 13}. The resulting performance for each case
is shown in Table 1. Training a tree took 187s and 480MB
RAM on average and testing took 13.8s took per image.

It can be noted that the tree depth is an important param-
eter. Intuitively, deep trees result in highly specific features
thereby overfitting training data. On the other hand, shal-
low trees result in generic features that are less effective in
describing objects. Since the configuration pair {10, 7 × 7}
performs reasonably well for all classes, we use it for all ex-

Table 2. EHTZ Dataset: Performances of independent fea-
tures (4), grouped features (6) and their combination (7)

Average Precision optimal λ Recall at 0.3/0.4 fppi
(4) (6) (7) (4) (6) (7)

Applelogos 77.8 77.4 85.4 0.9 80.0/80.0 90.0/90.0 90.0/90.0
Bottles 85.9 84.3 93.8 0.7 92.9/96.4 89.2/89.2 96.4/96.4
Giraffes 82.6 76.9 83.4 0.1 91.5/93.6 78.7/80.8 91.5/91.5
Mugs 84.9 62.6 84.1 0.1 90.3/90.3 67.7/74.2 87.1/90.1
Swans 83.2 63.3 90.2 0.6 100/100 70.6/70.6 100/100

(a) Bottles (b) Swans

(c) Giraffes (d) Mugs

Fig. 2. ETHZ Dataset: Precision-recall curves for indepen-
dent features (red), group features (black) and the best com-
bination (green).

periments henceforth.
To investigate the effect of combination according to (7),

we vary the parameter λ in [0, 1]. We record the best perfor-
mance in Table 2 and visualize the same in Fig. 2. Two impor-
tant observations can be made drawn: Firstly, there is a higher
performance gain for rigid object classes against those with
high intraclass variations, namely articulations in Giraffes and
handle variations in Mugs. And secondly, the choice of opti-
mal λ is class dependent and should therefore be set using a
validation dataset. Both conclusions point towards the need
for more data.

Further, comparing with state-of-the-art at (0.3/0.4) fppi
averaged over all five classes, [12, 11] perform at (94.0/95.8)
and (95.2/95.6) respectively against the best possible perfor-
mance of (93.6/93.6) from our setup. With average precision,
[10, 9] perform at 88.2% and 87.7% respectively against our
best possible performance of 87.5%, thereby indicating that
the performance is comparable to the state-of-the-art.

Note that in contrast to most methods, our approach nei-
ther performs an additional verification step nor relies on spe-
cific contour features typical for this shape dataset.

INRIA Horse Dataset. The dataset consists of 170 posi-
tive and 170 negative examples; of which the first 50 in each
case are used for training. The forest of independent fea-
tures is made up of 5 trees each trained with 40k positive and
negative patches each. Further, hard-negative training is per-
formed by mining the 50 hardest negative examples in the
training data. This contributes to an additional gain of 8%
recall at 0.3 fppi.

Here, three types of splitting functions are investigated on
grouped features as discussed in Section 2.2. Firstly, axis
aligned forests as used in [23]. Secondly, oblique forests
that employ splitting functions with weights wT ∈ [0, 1] and
lastly, oblique forests with weights wT ∈ [−1, 1]. Perfor-



(a) INRIA Horse Dataset (b) Weizmann Dataset

Fig. 3. Precision-recall plots showcasing the performance of
three types of splitting functions for grouped features. The
oblique forests outperform axis aligned forests.

mance of each of the three variants is shown in Fig. 3(a).
While the oblique forests outperform axis aligned forests, also
allowing negative weights does not change the performance.

Table 3 compares state-of-the-art methods with the grouped
features using an oblique forest combined with independent
features with λ = 0.1, obtained by splitting the training data
in half to generate a validation set.

Weizmann Horse Dataset. The dataset comprises 200
images for training and validation and 456 images for test-
ing. For the independent features, we train a forest of 5
trees with 40k positive and negative patches each followed
by hard-negative training. The retraining, however did not
yield a significant gain in performance. As for the INRIA
horse dataset, we evaluate three types of splitting functions
shown in Figure 3(b). The oblique forests again outperform
the axis-aligned forests. Table 3 compares state-of-the-art
methods with the grouped features using an oblique forest
and combined with independent features at λ = 0.1, fixed as
in INRIA Horse Dataset.

Berkeley 3-D Object Dataset. The dataset is a collec-
tion of real-world images captured with a Kinect sensor con-
sisting of RGB-D image pairs, gathered for over 50 classes.
The dataset comes bundled with post-processed data that in-
terpolates missing depth information. The dataset also comes
with a six-fold split for 8 of these classes, resulting in 48
splits, over which baseline performances using a part-based
model [26] for various RGB, D and RGBD features are pre-
sented in [25]. Interestingly, the authors report a significant
drop in performance upon including depth information.

The forests of the independent features are ensembles of
10 trees, each trained with 100,000 positive patches and an
equal number of negative patches. Hard negative training was
not incorporated.

We first investigate the utility of depth by comparing

Table 3. INRIA, Weizmann Dataset: Recall at 1.0 fppi
measure proposed [10] [12] [5] [13] [15] [24]

INRIA recall 88.0 93.7 92.4 87.3 85.3 × ×
Weizmann AP 97.2 × × × × 98.0 96.0
Weizmann recall 94.3 × × × × 95.1 91.5

forests built on independent RGB-only features ignoring
depth information, and independent RGBD features where
the depth of a pixel is used as an additional feature. The re-
sults are tabulated in Table 4. Unlike [25], we see a significant
improvement of RGBD over RGB features.

For the grouped features, we use an oblique forest with
wT ∈ [0, 1]. Each forest consists of 10 trees and is trained
with the same protocol as the forest for independent features.
The performance of grouped features is at most equal to that
of independent features with an exception for bottles where a
gain of 0.5% in average precision is seen.

We also combined both forests as in (7) by fixing the pa-
rameter λ for each split using a validation dataset that is ob-
tained by splitting the training data in half. Table 4 presents
performances of the best possible combination, value of λ set
using validation and the resulting performance. It is to be
noted that combining both forests mostly results in an im-
proved performance indicating that though the grouped fea-
tures alone do not outperform their individual counterparts,
they contain complementary information.

The proposed approach with λ estimated on the validation
set achieves an average precision of 0.314 and is compara-
ble or better than the state-of-the-art methods [25] and [27],
which achieve 0.280 AP and 0.312 AP, respectively. The ap-
proach [28] reports 0.592 AP, but it follows a different evalu-
ation procedure by using custom annotation of the dataset.

4. CONCLUSION

We have presented an approach for grouping features for
Hough-based object detection in RGB and RGB-D images.
For evaluation, we have used four datasets of varying diffi-
culty. While the approach performs comparable to the state-
of-the-art, the experiments give some interesting insights.
We have found that it is important that the features used for
grouping are not too specific and that the proposed oblique
forests outperform axis aligned forests for this task. The ex-
periments also showed that a combination of independent and
grouped features improves the performance, indicating that
both feature sets encode complementary information.

Acknowledgements: Authors acknowledge financial sup-
port from the DFG Emmy Noether program (GA 1927/1-1).

Table 4. VOCB3DO Dataset: Average precision
Class RGB RGBD Group bestComb. λ Combin. [25]
bowl 0.231 0.402 0.394 0.423 0.5 0.420 0.430
cup 0.123 0.346 0.339 0.358 0.5 0.357 0.260

monitor 0.282 0.540 0.530 0.547 0.4 0.547 0.750
mouse 0.208 0.282 0.275 0.302 0.4 0.301 0.190
phone 0.076 0.163 0.129 0.172 0.3 0.163 0.180

keyboard 0.085 0.314 0.283 0.321 0.4 0.321 0.170
chair 0.028 0.208 0.161 0.211 0.4 0.206 0.140
bottle 0.022 0.178 0.183 0.201 0.2 0.195 0.120
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