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Abstract— This paper proposes a method for high-quality
omnidirectional 3D reconstruction of augmented Manhattan
worlds from catadioptric stereo video sequences. In contrast to
existing works we do not rely on constructing virtual perspective
views, but instead propose to optimize depth jointly in a unified
omnidirectional space. Furthermore, we show that plane-based
prior models can be applied even though planes in 3D do
not project to planes in the omnidirectional domain. Towards
this goal, we propose an omnidirectional slanted-plane Markov
random field model which relies on plane hypotheses extracted
using a novel voting scheme for 3D planes in omnidirectional
space. To quantitatively evaluate our method we introduce a
dataset which we have captured using our autonomous driving
platform AnnieWAY which we equipped with two horizontally
aligned catadioptric cameras and a Velodyne HDL-64E laser
scanner for precise ground truth depth measurements. As
evidenced by our experiments, the proposed method clearly
benefits from the unified view and significantly outperforms
existing stereo matching techniques both quantitatively and
qualitatively. Furthermore, our method is able to reduce noise
and the obtained depth maps can be represented very compactly
by a small number of image segments and plane parameters.

I. INTRODUCTION

3D perception is an important prerequisite for many tasks
in robotics. For instance, consider self-driving vehicles [1]
which need to accurately sense their environment in order
to plan the next maneuver. Clearly, a 360° field of view is
desirable. During the DARPA Urban Challenge [2] laser-
based solutions have been popularized for that purpose.
However, they provide only very sparse point clouds or are
extremely expensive like the Velodyne HDL-64E. Further-
more, they suffer from rolling shutter effects and a separate
video sensor is required to provide color information for
each laser point. Instead, in this paper we advocate the
use of catadioptric cameras [3], [4] for 3D reconstruction.
Combining a traditional (perspective) camera with a mirror
coated surface, they are cheap to produce and provide a 360°
view of the scene which, in contrast to fisheye cameras can
be parameterized by the specific choice of the mirror shape.
Our setup is illustrated in Fig. 1(a).

We tackle the problem of reconstructing the static parts
of 3D scenes which follow the augmented manhattan world
assumption [5], i.e., scenes which can be described by ver-
tical and horizontal planes in 3D. Note that this assumption
does not require vertical planes to be orthogonal with respect
to each other as in [6], [7], but only with respect to the
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(b) 3D Reconstruction

(a) Stereo Camera Setup

Fig. 1. Omnidirectional 3D Reconstruction. Figure (a) illustrates
our catadioptric stereo camera setup. Figure (b) shows the result of the
omnidirectional 3D reconstruction obtained by our method.

horizontal planes. As illustrated in Fig. 1(b), many urban
scenes closely follow this assumption and also indoor scenes
are often composed of mainly horizontal or vertical surfaces
[81, [9]. In this work, we show that incorporating such prior
knowledge into the model can greatly benefit 3D reconstruc-
tion, in particular when dealing with omnidirectional images
that often suffer from blur and low contrast.

While planarity priors for stereo matching have been pro-
posed in the context of traditional perspective cameras [10],
[11], 3D planes do not project to planes in omnidirectional
space, thereby preventing the use of classical prior models.
We tackle this problem by proposing a slanted surface
Markov random field (MRF) model based on superpixels
in a virtual omnidirectional view. We start by spherically
rectifying adjacent camera views and obtain initial depth
estimates by matching each pair of views. Next, we aggregate
all depth measurements in one common omnidirectional
space and propose a Hough voting scheme which yields the
set of dominant 3D planes in the scene. Subsequently, each
3D plane hypothesis is mapped to a non-linear surface in
the omnidirectional image space, from which we compute
potentials for all superpixels in the image. Plane optimization
is formulated as a discrete labeling problem and carried out
using loopy belief propagation which amounts to finding
the best plane hypothesis for each superpixel under the
assumption that nearby superpixels are likely belonging to
the same surface.

Furthermore, we introduce a novel dataset of 152 diverse
and challenging urban scenes for which we provide om-
nidirectional imagery as well as laser-based ground truth
depth maps. We quantitatively show that our model outper-
forms state-of-the-art stereo matching techniques [12], [10]
which have demonstrated superior performance in related
evaluations such as the KITTI stereo benchmark [13]. We
also show that our results are qualitatively more pleasing as



they are less susceptible to noise and allow for identifying
the dominant planes which can be useful input information
to subsequent higher-level reasoning stages such as scene
understanding [14]. Our code, dataset and ground truth depth
maps are publicly available'.

II. RELATED WORK

While there exists a large body of literature on omnidirec-
tional camera calibration [15], [16], [17], [18], localization
[19], [20] and sparse structure-from-motion / SLAM [21],
[22], [23], surprisingly little research has been carried out
towards dense 3D reconstruction with catadioptric cameras.

In [24], Svoboda and Pajdla investigate the epipolar ge-
ometry of central catadioptric systems. They show that the
epipolar lines correspond to general conics in the omnidi-
rectional image which reduce to radial lines for vertically
aligned catadioptric cameras. As the latter allows for simple
rectification, several methods take advantage of this setup
by either mounting two catadioptric cameras on top of each
other [25] or by using a double mirror design which allows
for stereo matching with a single camera only [26]. Unfortu-
nately, this configuration has a fixed and short baseline and
only allows for accurate reconstructions in the very close
range.

For general camera motion, [27], [28] propose to repro-
ject the omnidirectional image to a panoramic image on
a virtual cylinder. Stereo correspondences are established
by searching along sinosoidal shaped epipolar curves [27],
[29], [30]. Gonzalez and Lacroix [28] overcome this problem
by rectifying the epipolar curves in panoramic images to
straight lines. Similarly, Geyer and Daniilidis [31] present
a conformal rectification method for parabolic images by
mapping from bipolar coordinates to a rectangular grid. In
this paper, we take advantage of spherical rectification [32],
[33], [34] which is more flexible, can handle the existence of
more than one epipole and does not depend on a particular
projection model.

Towards dense 3D reconstruction, Arican and Frossard
[34] obtain disparity maps from two omnidirectional views
by optimizing a pixel-wise energy using graph cuts similar
to the work of Fleck et al. [30]. Lhuiller [35] reconstructs the
scene from three consecutive omnidirectional images which
are projected onto the six faces of a virtual cube in order to
allow for traditional stereo matching techniques. The local
results are fused into a global model by selecting the most
reliable viewpoints for each scene point and merging the 3D
points using their median. This approach has been extended
in [36] towards reconstruction of larger models from video
sequences.

In contrast to the presented works that either consider
3D reconstruction from only two views or fuse depth maps
in a rather ad-hoc manner, here we present a direct ap-
proach to 360° depth map optimization based on disparity
estimates from two temporally and two spatially adjacent
omnidirectional views. Note that due to the diverse spatial
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Fig. 2.

Rectified Catadioptric Stereo Pair. The horizontal lines depict
points with the same azimuth angle ¢ in the left and right image.

distribution of baselines this setup eliminates depth ’blind
spots’ which occur when reconstructing from two views
only. Furthermore, we show how planarity priors can be
incorporated directly in the omnidirectional domain, leading
to clean low-noise 3D reconstructions. Accommodating the
fact of limited public omnidirectional datasets, we contribute
our data and the corresponding 3D ground truth to the
robotics community.

III. OMNIDIRECTIONAL MULTI-VIEW STEREO

To ease the formulation of the 3D reconstruction problem
we first compute a virtual 360° disparity image from four
omnidirectional views captured by a catadioptric stereo pair
at two consecutive time steps. Through combination of
depth information in one unified view we enable efficient
inference and overcome the problem of blind spots near the
epipoles [37] or occluded regions in some of the images.
We calibrate our omnidirectional stereo camera rig using the
method of [18] which optimizes for the best single viewpoint
approximation even in cases where the cameras are slightly
non-central, e.g., due to inaccuracies in the manufacturing
process. Next, we estimate camera motion between two
consecutive frames. We rectify temporal and spatial adjacent
omnidirectional input pairs and combine their disparity maps
in a single unified 360° inverse depth image which forms the
basis for the plane-based inference discussed in Sec. IV. We
discuss these steps in the following.

A. Motion Estimation

To estimate motion between two consecutive frames cap-
tured by the catadioptric stereo camera rig, we match sparse
features between all views of both consecutive stereo pairs.
We employ the FAST corner detector [38] in combination
with the BRIEF descriptor [39], which empirically led to
the best results for our images which suffer from blur at the
image boundaries and incidental noise due to small scratches
in the mirror surface. In practice, we obtain around 1300
correspondences in temporal and spatial direction. Using the
extrinsic calibration of the stereo camera rig, we triangulate



Fig. 3. Spherical rectification. After applying the rectifying rotation a 3D
point x lies on the plane 11 with the same azimuth angle ¢ in both (rotated)
spherical coordinate systems. The rotated coordinate system depends on the
relative position of both cameras determined by extrinsic calibration (stereo)
or motion estimation (motion stereo), respectively.

feature points in the previous frame ¢ — 1 and estimate
motion by minimizing the reprojection error with respect
to the observations in the current frame ¢ similar to the
StereoScan system [40] for perspective cameras. Robustness
against outliers is achieved by using RANSAC with 150
iterations. To balance the spatial distribution of feature points
we employ bucketing using 16 cells with a maximum of 12
features per cell.

B. Rectification

To allow for efficient stereo matching, we rectify all
four omnidirectional stereo pairs using spherical rectification
similar to [32], [34]. This is illustrated in Fig. 3. We rotate
an image pair in the spherical domain such that the epipoles
coincide with the coordinate poles (z-axis). The remaining
degree of freedom is chosen to minimize the relative rotation
of the y-axis with respect to the camera coordinate system.
Thus epipolar great circles coincide with the longitudes
and disparity estimation reduces to a onedimensional search
problem with constant azimuth angle ¢,. Fig. 2 depicts the
result of the spherical rectification process. For further details
we refer the reader to the appendix.

C. 360° Disparity Image

Given the rectified image pairs, we obtain disparity maps
using semi-global matching [12] which has shown excellent
performance in state-of-the-art perspective stereo bench-
marks such as the KITTI stereo evaluation [13]. In the
spherical domain the angular disparity v = 6,, — 05, is
defined as the difference between the angles 6, and 6,
of the two viewing rays imaging the same 3D world point
xs. The depth p, of x, is then given as

_ |It]| - sin b5,
sin 7y

s ey
where ||t|| denotes the baseline between the cameras. Due
to the fact, that the images are highly distorted near the
epipoles (leading to increased reconstruction error) as well as
occlusions by the recording platform itself, we extract stereo
depth estimates only from the front- (120°) and backward
(120°) parts of the ego-vehicle while motion disparity is
extracted only from the corresponding side (each 120°).

(a) Horizontal Plane (Side View)  (b) Vertical Plane (Top View)

Fig. 4. Plane hypotheses. This figure shows the relationship between a
point x described by the spherical parameters ¢, 6 and its depth r, and
the plane parameters dy,, d,, and « for horizontal and vertical planes in the
coordinate system of the virtual camera.

After triangulating all points in the four spherical image
pairs I, (05, ps) (with j denoting the image number), we
project them into a new virtual 360° image I(p,#) with the
camera coordinate system located in the center of the four
original views. We choose the center as origin for the virtual
coordinate system to minimize the relative displacement
of all reflected rays. Furthermore, all points are rotated
such that the x-y-plane of the new coordinate system is
parallel to the groundplane. We estimate this transformation
by computing the dominant plane below the camera using
RANSAC plane fitting of the 3D points. Depth values for
overlapping regions are merged by computing the mean value
for each of these pixels. Fig. 5 (left) illustrates the resulting
virtual 360° intensity image I (¢, ) and inverse depth image
D(¢,0), where we define inverse depth by D = 1/r with
r = /22 + y? independent of the z-component of each 3D
point to ease the representation of planes as will be discussed
in Sec. IV. Note that working with inverse depth instead of
depth implicitly accounts for the error characteristics of the
underlying stereo measurements.

IV. SLANTED-PLANE MRF

For efficient inference and to propagate information over
larger distances, we first partition the image into ~ 1000
superpixels using the StereoSLIC algorithm [10] applied to
the 360° inverse depth image D(p, ) from the previous
section. Next, we extract the set of dominant plane hy-
potheses for each scene and the problem of finding the best
plane per superpixel is cast as a discrete labeling problem.
The estimation of the plane hypotheses and the energy
formulation are presented in the following.

A. Plane Hypotheses

Based on the fact that our coordinate system is parallel
to the groundplane (x-y), we are able to describe vertical
planes using two variables (angle o and distance d,) and
horizontal planes with a single variable only (distance dj)
as illustrated in Fig. 4. Since the depth r is independent from
the z-component, the relationship between a 3D point x and
the distance of a plane passing through x is given by

dn(r,0) = —— @
du(r.ip,0) =7 -cos (¢ — ) ©)



where the variables denote angles and distances as defined in
Fig. 4. This suggests a simple hough voting scheme: We ac-
cumulate the votes of all pixels in the virtual omnidirectional
image in a 1-dimensional horizontal plane accumulator array
H(dp) and in a 2-dimensional vertical plane accumulator
array H(d,, «) as illustrated in Fig. 5 (middle). To make the
votes more discriminative, we disambiguate pixels belonging
to horizontal and vertical surfaces by casting each vote with
an additional weight which corresponds to the likelihood
of a pixel belonging to a horizontal (or vertical) surface.
This likelihood is modeled by logistic regression using the
vertical inverse depth gradients as input. We estimate the
parameters of the sigmoid function using a held out training
set for which all horizontal and vertical surfaces have been
manually labeled. The maxima of the voting accumulators
H(dp) and H(d,,«) are computed using an efficient non-
maxima suppression implementation [41] which we have
modified to handle cyclic image panoramas.

B. Energy Formulation

Given the plane hypotheses from the previous section, we
formulate the problem of assigning each superpixel to one
of the planes as a discrete energy minimization problem.
More formally, let S = {s1,..., sy} denote the variables of
interest, each corresponding to one of the superpixels, where
s takes a discrete plane index s € {1,..., N} as value. Here,
M denotes the total number of superpixels in the image and
N is the number of plane hypotheses. We define the energy
function to be minimized as

V(S) =D [u () +¢ua(s)] + D Wplsr,s2) @

seS (s1,52)ENs

with unary terms 1, and pairwise terms v, where Ns de-
notes the set of neighboring superpixels, i.e., all superpixels
that share a common boundary.

The first unary term models the inverse depth fidelity

Yun(s) = wuals) Y |pulDp.s) = D))| )

PEPs

with weight parameter w,,. Here, ﬁ(p, s) is the inverse
depth at pixel p = (p,0)” predicted from the plane with
index s, D(p) is the inverse depth estimate at pixel p
(see Sec. III-C) and p,(x) = min(|z|,7,) is a robust [y
penalty function with truncation parameter 7,,. Furthermore,
Ps denotes the set of all pixels with valid inverse depth
hypothesis D(p) which are covered by superpixel s and
a(s) € [0,1] is a function that predicts the accuracy of
the inverse depth map D averaged over superpixel s from
training data. The latter has been introduced as we found the
reliability of SGM to correlate strongly with image blur and
hence also image location when dealing with omnidirectional
images. In practice, we take a(s) as the average ratio of
correctly predicted depth values computed from a held-out
training set.

The second unary term models the prior probability for
surfaces to be horizontal or vertical and is given by

- 2pp(s)—1 ifseH
Pus (8) = Wu, X { 1 —2pp(s) otherwise ©)
where H is the set of horizontal planes and
1
Pr(s) = > php) €0,1] (7)

PEPs

is the prior probability of superpixel s being horizontal. Here,
p),(p) is simply the probability of pixel p being horizontal
which we compute from our held-out training set augmented
with manually labeled polygons of vertical and horizontal
surfaces. Note how (6) assigns a positive score to plane
hypotheses that agree with the expected plane type and
negative scores otherwise.

Our pairwise model encourages neighboring superpixels
to agree at their boundaries

Yp(si,s2) =w, Y. pp(D(p,s1) — D(p,s2))  (8)

pEle,SZ

where w,, is a smoothness parameter and B, ,, is the set of
boundary pixels that are shared between s; and so. Similar
to the depth fidelity term, we take p,(z) = min(|z|, 7,) as
the robust /; penalty with truncation parameter 7,,.

C. Learning and Inference

For inferring S we make use of min-sum loopy belief
propagation to approximately minimize the energy specified
in (4). The parameters of our model are estimated from a
separate training set consisting of 80 images. As (4) depends
nonlinearly on 7, and 7, traditional CRF learning algorithms
[42] are not feasible and we resort to Bayesian optimization
[43] for estimating the parameters, yielding w,, = 1.2,
Wy, = 1.0, w, = 1.0, 7, = 0.05 and 7, = 0.08.

V. EVALUATION

We evaluate our approach using stereo sequences cap-
tured with our autonomous driving platform AnnieWAY. We
equipped the vehicle with two horizontally aligned hyper-
catadioptric cameras on top of the roof of the vehicle, a high-
precision GPS/IMU system that delivers groundtruth motion
and a Velodyne laser scanner that provides 360° laser scans
with a vertical resolution of 64 laser beams.

A. Ground truth

We use the Velodyne laser scanner as reference sensor
for our quantitative evaluation. As we focus on static scenes
only, we are able to accumulate the laser point clouds
(+/- 5 frames) using ICP point-to-plane fitting which yields
relatively dense ground truth depth maps (see Fig. 6(a)
(top) for an illustration). The calibration between the cata-
dioptric camera and the Velodyne laser scanner is obtained
by minimizing the reprojection error in the image from
manually selected correspondences. To evaluate the quality
of depth information depending on surface inclination, we
also labeled all horizontal and vertical planes and obtain the



Fig. 5.

360°

Plane Hypotheses. This figure shows the virtual omnidirectional intensity image (left top) and the corresponding false color depth map from

SGBM (left bottom), the Hough space for vertical planes (middle) and the intensity and inverse depth image with three randomly selected planes (right)
corresponding to the colored maxima in the Hough space. Note how the cyan maximum describes a plane that is closer to the camera center (smaller d,,)
than the planes corresponding to the green and purple maxima. This can also be verified by looking at the plane visualizations on the right.

plane parameters using the Hough transformation presented
in Sec. IV-A with the ground truth depth maps as input
(in contrast to the estimated ones used in our method). Our
dataset comprises 80 training and 72 test scenes in total.

B. Quantitative Results

We evaluate the proposed method against state-of-the-art
stereo vision algorithms. Our baselines include simple Block
Matching (BM), Semi-Global Matching (SGBM) [12] (in
both cases we made use of the OpenCV implementations), as
well as the more recently developed StereoSLIC algorithm
[10]. To investigate the importance of the proposed plane-
based prior, we also implement a winner takes all (WTA)
plane selection strategy, which selects the best plane inde-
pendently for each superpixel. Note that this corresponds to
minimizing (4) while ignoring pairwise potentials 1, (s1, $2)
and the horizontal prior 1, (s).

We compute the inverse depth error e = |Dy; — Deg| for
every pixel for which groundtruth is available. To guarantee
a fair comparison, we fill in missing values in the resulting
inverse depth images using background interpolation [12],
[13]. We report the mean number of bad pixels and the
mean end-point error averaged over the full test set. A pixel
which has an inverse depth error e larger than 0.05 1/m is
regarded as a bad pixel. Tab. I shows the mean percentage
of bad pixels and the mean end-point error for all algorithms
averaged over all 72 test images. The first row depicts the
errors for all pixels where depth ground truth is available,
while the other rows consider planar regions only. For WTA
we vary the threshold of our non-maxima suppression stage
between 50 and 500 (WTA 50 / WTA 500 in Tab. I), yielding
about 5 to 150 planes on average. For our method, we set
this threshold to a constant value of 150.

Our experiments show that the proposed method signifi-
cantly outperforms the baselines. The difference is especially
pronounced for horizontal planes, but our method also de-
creases the number of bad pixels for vertical planes with
respect to all baseline methods.

C. Qualitative Results

Fig. 6 and 7 depict the inverse depth images for the
analyzed algorithms (b-f) and the inverse depth groundtruth
obtained from the Velodyne laser scanner (a). Colors repre-
sent distance, where green is close and blue denotes distant

points. Alongside, we show the 3D reconstructions obtained
when reprojecting all pixels of the corresponding inverse
depth maps back into 3D (b-f). Note how our algorithm is
able to produce much cleaner depth images and smoother
3D reconstructions. A random selection of challenging 3D
scenes reconstructed using our method is given in Fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for high-quality om-
nidirectional 3D reconstruction from a single virtual inverse
depth image. We showed how efficient inference with plane-
based prior models is possible and leads to clean and easy
to interpret depth maps that outperform state-of-the art depth
estimation techniques in terms of 3D reconstruction error. In
the future, we plan to investigate possible extensions towards
integrating depth information from more than four views to
allow for example for urban reconstructions at larger scales.

APPENDIX

This appendix provides details of the spherical rectification
outlined in Sec. III-B. For clarity we only illustrate the
process for the first (reference) camera. The mapping for
the second camera is obtained in a similar manner.

Let I,(u,v) denote the omnidirectional input image with
pixel coordinates (u,v)T and let (0, ;) denote the rec-
tified spherical image which depends on the azimuth angle
s € [0,27] and inclination angle 65 € [0, 7] as illustrated
in Fig. 3. We obtain

v/ T2 + y2
s = arctan Ir 0, = arctan VI T Y 9)

r Zr
where (z,,9,2.)7 = R (z,y,2)T, R is a rotation ma-
trix and the ray (z,y,2)7 corresponds to pixel (u,v)? in
I, (u,v). The rectifying rotation matrix R is computed such
that the epipoles coincide with the coordinate poles, i.e., all
epipoles lie on the line connecting both camera centers. This
is achieved by letting

R = [r;,r)eq]
rs = Yo— (91T1YO)911
rn = TgXr3

where y, denotes the y-axis of the original omnidirectional
camera system (before rotation) and e;; is the first epipolar
point as illustrated in Fig. 3. Note that this definition removes



Bad Pixels (%)

| SGBM | BM | StereoSLIC | WTA 50 | WTA 100 | WTA 150 | WTA 200 | WTA 300 | WTA 500 | Ours

All Pixel 11.89 | 9.52 8.95 11.62 11.63 11.59 11.62 12.63 14.66 4.04
All Planes 1341 | 7.27 9.50 13.22 13.16 12.85 12.28 11.96 11.98 1.24
Horizontal Planes 1745 | 6.75 12.24 17.48 17.40 17.04 16.33 15.29 13.28 1.03
Vertical Planes 2.52 | 5.81 1.85 2.11 2.10 2.20 2.33 6.64 14.10 1.51

Mean Error (1/7)

SGBM | BM | StereoSLIC | WTA 50 [ WTA 100 | WTA 150 [ WTA 200 | WTA 300 | WTA 500 [ Ours

All Pixel 0.026 | 0.022 0.021 0.029 0.029 0.029 0.029 0.030 0.031 0.013

All Planes 0.029 | 0.022 0.022 0.033 0.033 0.032 0.031 0.030 0.030 0.009

Horizontal Planes 0.034 | 0.023 0.026 0.038 0.038 0.037 0.036 0.034 0.032 0.010

Vertical Planes 0.008 | 0.013 0.008 0.008 0.008 0.009 0.009 0.016 0.023 0.008
TABLE 1

Quantitative Analysis. THIS TABLE SHOWS THE MEAN PERCENTAGE OF BAD PIXELS AND THE MEAN INVERSE DEPTH ERROR FOR ALL BASELINES

AND THE PROPOSED METHOD AVERAGED OVER ALL 72 TEST IMAGES. THE FIRST ROW DEPICTS THE ERRORS FOR ALL PIXELS WHERE DEPTH GROUND
TRUTH IS AVAILABLE, WHILE THE OTHER ROWS CONSIDER PLANAR REGIONS (OF A SPECIFIC TYPE) ONLY.

(d) StereoSLIC

Fig. 6.
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Inverse Depth Maps and 3D Reconstructions. The figures show the inverse depth images and the resulting 3D reconstruction for the same

scene for the baseline algorithms (BM, SGM, StereoSLIC), for the best WTA result with threshold 150 and our MRF based plane estimation.

the remaining degree of freedom by ensuring that the rotated
y-axis is similar to the original one. The epipoles are
obtained from the essential matrix E = [t]xR which is
specified by the rigid motion [R|t] between both cameras.
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Fig. 8. 3D Reconstruction: This figure shows 3D reconstructions for different urban scenarios obtained when reprojecting the inverse depth maps
produced by our method into 3D. Note that the viewpoint of the rendered 3D point clouds deviates significantly from the viewpoint of the four cameras.



