

Discovering Object Classes from Activities

Abhilash Srikantha^{1,2} and Juergen Gall¹

¹Computer Vision Group, University of Bonn ²Perceiving Systems Department, Max Planck Institute for Intelligent Systems

1. Quick Summary

- Object models require a vast amount of training data to perform well
- Recent shift of attention to utilize weakly annotated data in videos
- Fundamental assumption of present day methods:
 - Motion and/or appearance of the object of interest is dominant
 - Object of interest forms the main theme of the video

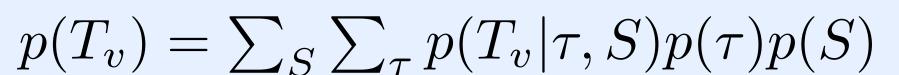
- Video data for objects like mugs, plates etc. is scarce
- Labelled human activity data available in plenty
- Previous assumptions do not hold: dominant human

Input to the system

- Set of videos of similar activities
- Automatically extracted Human Pose

Datasets for Experiments

- ETHZ (RGBD, TOI, Model Based Pose est.)
- CAD-120 (RGBD, Kinect, OpenNI tracker)
- MPII-Cooking (RGB, Pictorial structures)

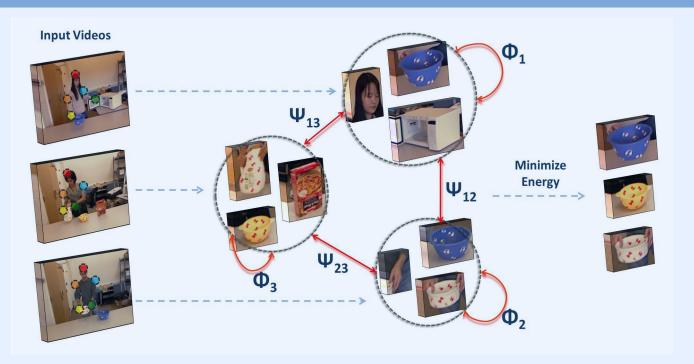

Output from the system

- Object tubes common to all videos
- One tube per video

Conclusions

- Appearance insufficient for small objects
- Big gains from encoding Functionality
- Present day pose estimation is good enough

2. Tubes Generation



Tubes generated by randomly selected superpixel and tracking algorithms

3.Model

Input is a set of action videos with human pose. Instances of the common objects are discovered by defining similarity in apperance and functionality as:

 $E(L) = \sum_{v} \Phi(l_v) + \sum_{v,w} \Psi(l_v, l_w)$

Binary:

Body avoidance Pose-object-relation

SIZ

Shape APP Functionality

 $\Phi (l_v) = \lambda_1 \Phi^{app} (l_v) + \lambda_2 \Phi^{pose} (l_v)$ $+\lambda_3 \Phi^{body}(l_v) + \lambda_4 \Phi^{size}(l_v)$

 $\Psi (l_v, l_w) = \lambda_5 \Psi^{shape} (l_v, l_w) + \lambda_6 \Psi^{func} (l_v, l_w)$

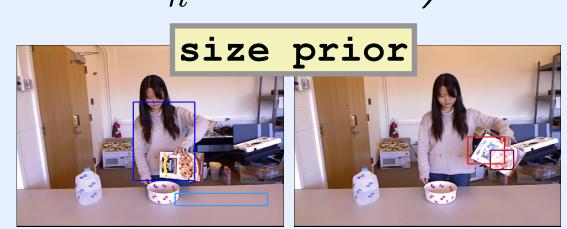
4. Unary Terms

O Appearance saliency: chi² RGB(D) distance between inside a tube and around it

$$\Phi^{app}(l_v) = \frac{1}{K} \sum_{k=1}^{K} \left(1 - \frac{1}{2} \sum_{i} \frac{(I_{k,i} - S_{k,i})^2}{I_{k,i} + S_{k,i}} \right)$$

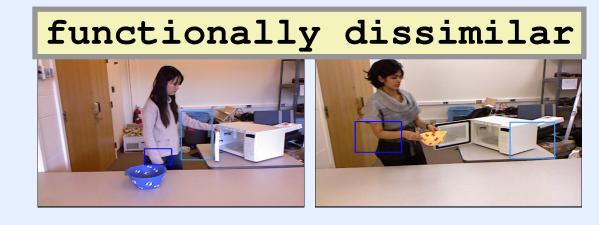
O Pose-object relation: median distance between closest joint and center of the tube

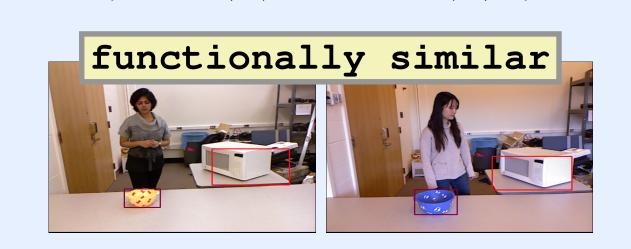
$$\Phi^{Pose}(l_v) = \frac{1}{K} \sum_{k=\alpha \cdot K}^{(1-\alpha) \cdot K} \|c_{D(k)} - j_{D(k)}\|$$


Body avoidance: maximum response of the body-appearance/skin model

$$\Phi^{body}(l_v) = \max \{ \bar{p}_{skin}(I), \bar{p}_{upper}(I), \bar{p}_{lower}(I) \}$$

Size: Variation of object size based on the size of the hand


$$\Phi^{size}(l_v) = \exp\left(\frac{(w_{l_v} - 2w_h)^2 + (h_{l_v} - 2h_h)^2}{2\sigma_h^2}\right)$$

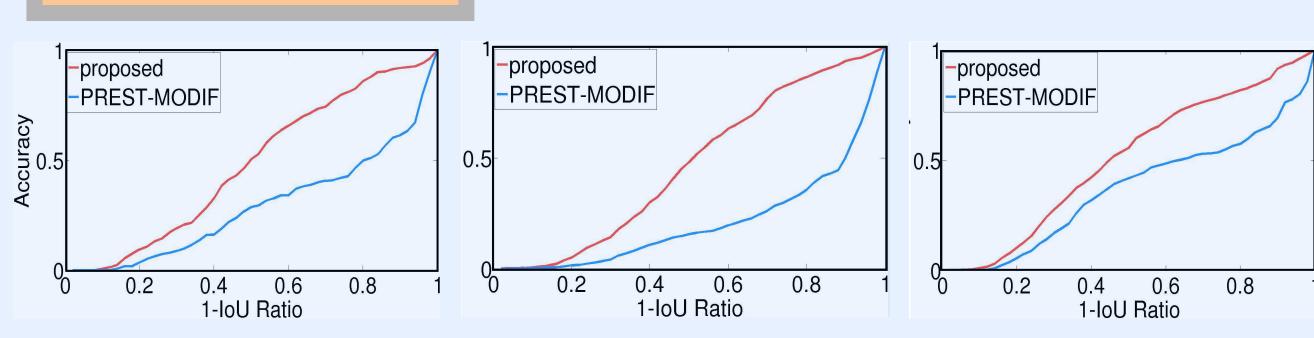


5.Binary Terms

 Functionality: (Normalized) Head-Object distance after DTW alignment $\Psi^{func}(l_v, l_w) = \operatorname{median}_k \left\{ |d_{\omega_v(k)} - d_{\omega_w(k)}| \right\}$

Shape: Median PHoG distance between frames after DTW alignment

$$\Psi^{shape}(l_v, l_w) = \operatorname{median}_k \left\{ \frac{1}{2} \sum_i \frac{\left(P_{\omega_v(k), i} - P_{\omega_w(k), i}\right)^2}{P_{\omega_v(k), i} + P_{\omega_w(k), i}} \right\}$$



6. Inference

- Model parameters set using Validation Dataset (one class per dataset)
- Use loopy belief propogation (TRW-S) algorithm for inference

7.Results

IOU distribution: Cumulative frame IOU distribution for MPII, ETHZ and CAD-120

Comparison with state-of-theart: Prior art full model, prior art using proposed tubes, full proposed model

	prest-exact	prest-modif	proposed
ETHZ	0.063	0.249	0.447
CAD	0.039	0.246	0.410
MPII	0.023	0.221	0.342

	proposed	APP	APP+SIZ	FUN	APP+FUN	FUN+SIZ
ETHZ-Action	0.447	0.192	0.305	0.292	0.312	0.390
CAD-120	0.410	0.168	0.191	0.147	0.202	0.350
MPII-Cooking	0.342	0.079	0.149	0.229	0.235	0.288

Evaluating potential groups: Average class IOUs for various combinations

	Φ^{app}	Φ^{pose}	Φ^{body}	Φ^{size}	Ψ^{shape}	Ψ^{func}
ETHZ-Action	0.35	1.88	-25.49	-13.50	-4.62	-8.86
CAD-120	-48.66	-15.73	-18.89	-20.80	-40.15	-9.19
MPII-Cooking	-15.85	0.06	-31.09	-10.70	0.058	-60.95

Evaluating individual potentials: (%) change in average class-IoU when discarded

	ETHZ	CAD	MPI	
GTruth	60.6	29.4	47.8	
Inferred	53.2	24.4	35.3	

Comparing object models: Average precision (%) of object detectors from groundtruth and inferred tubes

8. Inferred Tubes

