
Learning Coupling Terms for
Obstacle Avoidance

Submitted by

Akshara Rai

Supervisors

Franziska Meier
Auke Ijspeert
Stefan Schaal

Master Thesis, Academic year 2013-2014, Spring Semester





Abstract

Autonomous manipulation in dynamic environments is important for robots to

perform everyday tasks. For this, a manipulator should be capable of interpreting

the environment and accordingly planning an appropriate movement. At least two

possible approaches exist for this in literature. Most commonly, a planning system

is used to generate a complex movement. This plan takes all the constraints in the

environment into account and finds the globally optimal solution. Alternatively, a

simple plan could be chosen and modified with sensory feedback to accommodate

additional constraints. One way of doing this is to equip the controller with

features that remain dormant most of the time, except when specific situations

arise, e.g., invoking obstacle avoidance behaviour on detecting an obstacle in the

surrounding. Dynamic Movement Primitives (DMPs) form a robust and versatile

starting point for such a controller that can be modified online using a non-linear

term, called the coupling term. This can prove to be a fast and reactive way of

obstacle avoidance in a human-like fashion. We propose a method to learn this

coupling term from human demonstrations using simple features as a starting

point and making it more robust to avoid a larger range of obstacles. We also

test the ability of our coupling term to model different kinds of obstacle avoidance

behaviours in humans and use this learnt coupling term to avoid obstacles in a

reactive manner. This line of research aims at pushing the boundary of reactive

control strategies to more complex scenarios, such that complex and usually

computationally more expensive planning methods can be avoided as much as

possible.
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CHAPTER 1

Introduction

To become part of daily human life, humanoid robots need to deal with dynamic

and stochastic environments that occur in everyday settings. These environments

are by no means fixed, or even completely known and are constantly undergoing

changes. Robots should be able to respond as well as adapt to such changes.

In response to a change in the environment, the robot can pursue at least two

different strategies. First, it could re-plan, while anticipating future changes in

the environment with model-based predictions. Such planning usually takes into

account the whole set-up of the environment and searches for a globally optimal

solution. It is often computationally expensive and time consuming, such that

rapid reactions are hard to accomplish. Alternatively, the robot could try to

modify its on-going control policy with reactive strategies, which are usually very

fast to compute, but sub-optimal in comparison to a global planning algorithm.

In this thesis, we will pursue the latter strategy and examine ways of learning one

such strategy for obstacle avoidance from demonstrations.

Dynamic Movement Primitives (DMPs), as introduced in [6] provide a simple and

versatile framework to approach this problem. DMPs are differential equations

with well-defined attractor properties that can model almost arbitrarily complex

motions. They can be easily initialized with imitation learning and used to

generate movements that are inherently robust to changes in task duration, goal,

starting point, translation and slight perturbations. These features make DMPs

an extremely powerful tool for performing tasks in dynamic environments. Our

work exploits the ability of DMPs to be modified online based on feedback from

the environment using non-linear functions called coupling terms.

In order to address a reactive controller for dynamic environments using DMPs,
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Figure 1.1: The robot Apollo is a dual arm manipulation platform consisting of
two 7 DoF KUKA light weight arms, two Barrett hands and a SARCOS humanoid
head.

we need to generate sufficiently powerful coupling terms that can use relevant

information from the environment and change a motion plan accordingly. For

the nominal movement of the DMP, i.e., without unexpected events in the envi-

ronment, the coupling term should be inactive, i.e., the features that form the

coupling term should be dormant. Only if certain sensory events trigger the

features to be non-zero, the coupling term will become active and modulate the

on-going movement appropriately. With the right features, very powerful feedback

terms can be added to the DMP controller. Therefore, designing appropriate

features, either manually, or hopefully with general machine learning techniques, is

at the core of this approach. We envision that daily task components like obstacle

avoidance, avoidance of joint-angle limits, force control when contacting an object,

bi-manual task coordination, etc., can become part of reactive feedback control.

As a first step towards this vision of reactive feedback controllers, we will examine

obstacle avoidance. To avoid obstacles, a manipulator needs to modify an original

plan of movement based on position, speed and size of the obstacle. It might

often not know the exact location, or the complete shape of the obstacle. We

develop a reactive, local method of obstacle avoidance using coupling terms

that modifies an initially planned DMP online. We start by using an initially

simple obstacle avoidance formulation, as proposed in [21] for 2-D point obstacle

avoidance by humans, and transform it into a 3-D formulation for extended and

multiple obstacles. We go on to propose a basis of features that can be used

to avoid obstacles of arbitrary sizes. Then using these features, we learn the

appropriate coupling term from human demonstrations of obstacle avoidance. Our
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results demonstrate that human-like obstacle avoidance can be accomplished from

reactive feedback terms. We performed experiments on the simulated version

of Apollo, depicted in Figure 1.1, as well as several experiments in simulated

MATLAB environments.

11



12



CHAPTER 2

Related work on obstacle avoidance

Obstacle avoidance is a widely addressed problem in robotics and still remains

unsolved. Most methods that address it in literature can be broadly classified

into two categories- local and global methods. Local methods use the obstacle

and its relationship with the robot locally to control, such as the Vector-Field

Histogram [2], curvature velocity method [19] and motion field flow [12]. These

local methods are reactive and fast, but might lead to sub-optimal solutions as

they do not take the whole environment into account. Global obstacle avoidance

methods are path planning methods like [10], which have a global information

of the obstacles and the environment. Others like the certainty grid methods

in [11] take a probabilistic approach of obstacle locations in the environment to

take into account inexact sensor data while path planning. These methods can

find an optimal solution, if it exists, even in very complex environments but are

often computationally expensive and, thus, less reactive to suddenly appearing

obstacles. There have been attempts to optimize these methods in [3], but they

are still less reactive than local methods.

A more practical approach are hybrid systems, that switch between global and

local methods. The solution may not be optimal, and might still suffer from

the drawbacks of a local algorithm. Some methods like [1] break the task into

small tasks that are solvable locally. If this decomposition fails, global planning is

invoked.

Reshaping methods like the elastic band approach [17] provide another way to

fill the gap between global path planning and reactive sensor-based control. The

elastic band is a collision-free path, that starts from a path generated by a planner

and that is deformed when encountering new obstacles. However, if the original
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path becomes infeasible due to changes in the environment, this method is unable

to find a new feasible path. A reactive method proposed by [22] mixes path

re-planning and deformation using efficient roadmap use and parallel planning

and execution. Thus when local deformation no longer works and the original

path becomes infeasible, we can re-plan.

In artificial potential field approaches – static or time-varying – as proposed by

[9] potential fields are built in the environment around the robot, with attractive

fields assigned to the goal and repulsive fields to the obstacles. These can be used

to avoid obstacles by not just the end-effector but all of the manipulator links.

However, these are difficult to implement in complex environments and the robot

can get stuck in a local minima even if a path to the goal actually exists. In the

attractor dynamics approach, as described in [7], the heading of the end-effector

is used instead of the position, that helps escape local minima points that hamper

potential field methods.

Potential fields with DMPs were used in [13] to avoid point obstacles. This method

can easily handle multiple obstacles. Furthermore, it ensures obstacle avoidance

for the whole manipulator link and not just the end-effector. However, it does

not deal with extended obstacles and it can be computationally expensive to

calculate potential fields on the fly. Other optimization based obstacle avoidance

methods, as described in [18] and [8] can be used in combination with DMPs.

These are however useful in static or quasi-static environments. A reactive method

of obstacle avoidance with DMPs was described in [14] to avoid obstacles with the

help of direct feedback from the environment. This method uses coupling terms

in DMPs as a local obstacle avoidance function that uses the heading direction

and distance from obstacle to avoid moving point obstacles. However, it does not

take extended obstacles in to account.

With these ideas in mind, we use a DMP, which is a pre-planned path for

manipulation and modify our original plan using coupling terms. Unlike earlier

works, our method is reactive and capable of avoiding a wide range of obstacles in

a human-like fashion. These coupling terms consist of local features like distance

from obstacle, velocity of end-effector, etc. to avoid extended obstacles.

In the following chapters, we describe the DMP formulation, followed by our

coupling term formulation. We then describe the learning methods employed

to make our coupling term robust and finally, show experimental results for our

formulation.
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CHAPTER 3

Background on Dynamic Movement Primitives

DMPs consist of a simple point attractive model, instantiated by the second order

dynamics given in Eq. 3.1. There are three basic components of a DMP: the

transformation system, the non-linear function and the canonical system. The

transformation system of the DMP is given by

τ ÿ = αz(βz(g − y) − ẏ) + f +Ct (3.1)

where g is the known goal position, αz and βz are time constants, τ is a temporal

scaling factor and y, ẏ, ÿ are the position, velocity and acceleration. f is a

non-linear term that allows modelling of almost arbitrarily complex movements

by the DMP. Ct is called the spatial coupling term that can be used to modify

the DMP online.

Eq. 3.1 can be interpreted as a spring-mass system with added non-linear terms

f and Ct. For f = 0 and Ct = 0 this system forms a globally stable system that

converges exponentially to the attractor point given by (y, ẏ, ÿ) = (g,0,0), which

means that starting from any arbitrary point, the system converges to the goal g.

These non-linear terms give the system more complex dynamics than the trivial

convergence to g and can be modelled using function approximators, such as

weighted exponential kernels.

The non-linear function f can most easily be defined as an explicit function of

time. However, explicit time dependence inhibits a straight forward mechanism to

couple and coordinate the DMP with other dynamical systems. Thus the DMP

framework uses an additional dynamic system that maintains the phase x of the

movement to avoid explicit time dependencies.
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This system is called the canonical system which is among the most basic dynamic

systems available with a point attractor at x = 0.

τ ẋ = −αxx +Cc (3.2)

x is a monotonically decreasing variable that goes from 1 to 0 in a time period

characterized by τ . Cc is a coupling term that can be used to modulate the

temporal evolution of the system.

Subsequently, f can be modelled as a function of x, using , for example, exponential

kernels:

f(x, g, y0) =
ΣN
i=1ψiwi
ΣN
i=1ψi

x (3.3a)

ψi = exp(−hi(x − ci)
2) (3.3b)

The influence of f vanishes after x has decayed to 0.

3.1 Modelling and generating movement with

DMPs

A DMP can be initialized from a demonstration that provides a trajectory consist-

ing of positions ydemo(t), velocities ẏdemo(t) and accelerations ÿdemo(t). From this

information, the non-linear function Eq. 3.3a can be regressed using the targets

ftarget(s) = τ ÿdemo − αz(βz(g − ydemo) − ẏdemo) (3.4)

The resulting weights wi minimize the error function J = Σs(ftarget(s) − f(s))2.

After learning the weights, a movement is generated as follows. The transformation

system of Eq. 3.1 is at rest when y = g and ẏ = 0, ÿ = 0. To trigger a movement,

x is set to 1, y = y0, g = gdesired. The desired attractor landscape is obtained by

plugging in the learnt wi into f and the desired movement duration is set to

τ . The canonical system is integrated to give x(t) and the corresponding f is

calculated, followed by integration of the transformation system to generate the

next required position and velocity.

This representation of a movement is robust to changes in goal, initial point,
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duration and scale of the movement. It can also be modulated online using the

spatial and temporal coupling terms mentioned before in Eq 3.1 and 3.2 and as

described in the next section.

3.2 Coupling terms

Coupling terms in DMPs can be used to couple sensory information with the

control of a robot in the canonical systems as well as the transformation system

of the DMP. For example, previously stored information from a force sensor

was used to grasp an object with uncertainty in position and orientation in [16]

by modulating the transformation system. Coupling terms can also be used to

modulate DMPs so as to not move beyond joint-angle limits [4]. In [5], the authors

proposed a way to learn coupling terms based on sensor observations during task

executions and used this as a feedback when executing the same task. In this

way, DMPs perform coupled bi-manual tasks efficiently by learning the external

force arising from the interaction. Learnt coupling terms from previous executions

of a task can also be used to associate sensory information with the task, as

proposed in [15]. Particular features can become active in each situation leading

to a particular kind of behaviour.
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CHAPTER 4

Coupling Terms for Obstacle Avoidance

[21] proposed a human-inspired obstacle avoidance function for point obstacles in

2D which was developed by [14] into a specialized coupling term Ct that could be

added to the transformation system of a DMP to avoid point obstacles.

In 2D, as shown for human walking experiments in [21], a simple obstacle avoidance

function can be given as

θ̇ = θ exp(−βθ) (4.1a)

where, θ is the angle between the velocity and the vector joining the end-effector

with the obstacle, as shown in Figure 4.1. To transform this into 3D Cartesian

coordinates, express ẏ as [ẏ cos(θ), ẏ sin(θ)] and differentiate it with respect to

time:

ẏ = [∣ẏ∣ cos(θ), ∣ẏ∣ sin(θ)]

dẏ

dt
=
dẏ

dθ

dθ

dt
= [−∣ẏ∣ sin(θ)

dθ

dt
, ∣ẏ∣ cos(θ)

dθ

dt
]

= [ẏ cos(θ + π/2), ẏ sin(θ + π/2)]
dθ

dt

[ẏ cos(θ + π/2), ẏ sin(θ + π/2)] is ẏ rotated by π/2. Thus, we can write ÿ as

ÿ = Rẏθ̇ (4.1b)

= Rẏθ exp(−βθ) (4.1c)

(4.1d)
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end effector position y

obstacle ovelocity ẏ

θ

Figure 4.1: The steering angle in the plane of the obstacle, end-effector and the
direction of motion

Since Ct can be seen as a repulsive force away from the obstacle,

Ct = γÿ (4.1e)

Ct = γRẏθ exp(−βθ) (4.1f)

where

θ = cos−1 (
(o − y)

T
ẏ

∣(o − y)∣ ∣ẏ∣
)

R = RotationMatrix(r, π/2)

r = (o − y) × ẏ

Here, o is the obstacle position and y and ẏ are the end-effector position and

velocity respectively. This 3D coupling term returns a (3 × 1) vector that can be

seen as a repulsive force perpendicular to ẏ away from the obstacle, in the plane

containing the obstacle, end-effector and velocity. Rẏ tries to move the heading

of the end-effector by π/2 while θ exp(−βθ) makes sure that the end-effector is

repulsed when its moving towards the obstacle. Thus, if the end-effector of a

robot moves away from the obstacle, it doesn’t experience any repulsive force.

However, there are a few problems with this formulation of obstacle avoidance, as

described below.

1. It does not ignore far-away obstacles, which would be expected from a robot.

2. This function is 0 for θ = 0, which means the force is 0 when directly heading

towards the obstacle.
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3. This might fail to avoid extended obstacles: This formulation mainly takes

the obstacle center into account. For large obstacles, a little more information

about the geometry of the obstacle might be useful.

To counter the above mentioned shortcomings, we modify this original coupling

term as described below:

1. To diminish the effect of distant obstacles we multiply the original coupling

term by a negative exponential of the distance.

2. To avoid 0 coupling term when moving directly towards the obstacle, we

added another component to the coupling term which is a spherical field of

repulsion away from the obstacle.

3. We use one or more points on the surface of the obstacle for obstacle

avoidance. However, this leaves us with the problem of choosing such a

point. One obvious point on the surface of the obstacle could be the closest

point on the surface of the obstacle. However it can be complex to calculate

this without the knowledge of the geometry of the obstacle. Since, we are

dealing with the plane passing through the obstacle center and end-effector,

one easy way to approximate the nearest point is to find the intersection of

the vector from end-effector to obstacle center and the obstacle boundary

(Figure 4.2). However, instead of choosing this particular point, we can

also choose several points on the obstacle surface, for example corners or

midpoints of edges, that seem to be representative of the obstacle.

It should be noted that our coupling term is still a local fashion of obstacle

avoidance that doesn’t need the overall geometry of the obstacle.

This gives three components to our new coupling term, which in 2D can be written

as

φ1 = θ exp(−βθ) exp(−kd) (4.1g)

φ2 = θ exp(−βθp) exp(−kdp) (4.1h)

φ3 = exp(−kd) (4.1i)

where d is the distance of the end-effector from the center of the obstacle and dp

is the distance from the nearest point. The function θ exp(−βθ) has a behaviour
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y

o

p

ẏ

θ

Figure 4.2: Plane defined by the obstacle center o, end-effector position y and
velocity ẏ. The ‘closest’ point p is the point which lies in this plane, and is defined
by the intersection of the vector joining o and y and the obstacle surface.

as shown in Figure 4.3a.exp(−kd) is the negative exponential of the distance that

diminishes the effect of far-away obstacles. The combined effect of these two

terms can be seen in Figure 4.3c. φ1 can be seen as a force that is directed away

from the center of the obstacle and φ2 is a repulsive force away from the nearest

point on the obstacle. φ3 is a spherical field around the obstacle that reduces

exponentially with the distance, as shown in Figure 4.3b.
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CHAPTER 5

Learning Coupling Term

Based on the features mentioned in the last chapter, we can now formulate our

coupling term as a weighted linear combination of three terms

Ct = γ1φ1 + γ2φ2 + γ3φ3 (5.1a)

where φ1 and φ2 can be seen as repulsive forces away from the obstacle center and

a point on the surface of the obstacle. φ3 is a uniform exponential field pointing

away from the obstacle center.

These features, when transformed into a Cartesian coordinate frame and combined

linearly, give rise to a coupling term that seems to be capable of avoiding extended

obstacles at almost any angle.

Ct = γ1Rẏφ1 + γ2Rẏφ2 + γ3Rẏφ3 (5.1b)

Some experiments with this coupling term and hand-tuned parameters γ, k, β can

be seen in Chapter 7. In case of multiple obstacles, a weighted linear combination

of the Cti from all the obstacles oi

CtTotal =
N

∑
i=1

wiCti (5.1c)

can be used. Obstacles can, for example, be weighted according to their proximity

to the goal. Those that are close to the goal get a lower weight than those that

are farther away, to allow the DMP to still reach the goal, even when crowded by

different obstacles.
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5.1 Basis of features

To be able to avoid obstacles in a wide range of situations and environments, we

need to extend the features described above to cover a larger basis. A closer look

at the features helps us to analyze the significance of the constituting components

and create a more general basis.

5.1.1 φ1 and φ2

φi = θi exp(−βθi) exp(−kdi)

Here θi, and di are as explained earlier in Figure 4.1 and 4.2. These can be

calculated by choosing appropriate points on the obstacle for obstacle avoidance.

β and k can, however, be seen as hyper-parameters that depend on the obstacle

and DMP. The peak of the curve shown in Figure 4.3a is at 1/β. Higher β implies

a very narrow region of influence of the obstacle. This means that the obstacle

repels the end effector only when it moves towards the obstacle. On the other

hand, a higher k means that the effect of the obstacle decreases very quickly

with distance. Thus, the obstacle repulsion only comes into picture when the

end-effector comes very close to the obstacle, as shown in Figure 4.3. In 3D, after

combining the two, this feature can be visualized as shown in Figure 4.3

Typically, we would like higher β and k if we are either moving very slowly, which

gives us time to react, or if the obstacle is very small. On the other hand, for a

fast moving trajectory and big, elongated obstacles, we would like a smaller β and

k. However, very large β can cause peaks in the coupling term, thus we use only

moderately high values. Also, we might not want to consider the points on the

boundary in the case of small obstacles, but give them more importance when

dealing with larger obstacles.

Thus, different obstacles would need different parameter values to be avoided

effectively.
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5.1.2 φ3

φ3 = exp(−kd)

This term uses only the distance from the obstacle and does not take into account

the heading of the end-effector. k determines the range of influence of each obstacle.

Ideally, we would like obstacles that are not in the path of the end-effector to have

lower influence than those that come in the path directly. Also, larger obstacles

should have a larger range than smaller obstacles.

As a solution we propose to generate a general basis spanning over intervals of

the parameters. The simplest basis of features could be created on a grid. An

example grid could be:

k ∶= {1,2,3,4,5}

β ∶= {5/π, 10/π, 15/π, 20/π, 25/π}

while using just two points on the obstacle - center and nearest point.

This approach would give us a wide range of features that should be capable of

creating coupling terms for obstacles avoidance for a larger variety of obstacles.

One could also consider including more points on the obstacle as added features to

the basis, for example, a grid of points around the closest point. Finally, we need

to determine the relevant features within that basis and the optimal parameters γ

to combine them to form the coupling term Ct. Given some target values, this

can be achieved using linear regression with automatic relevance determination.

5.2 Linear Regression to learn the coupling terms

A first step is to learn the weights γ introduced in Equation 5.1b. Since Ct is

linear in γ, this can be solved using linear regression. The target values of Ct

can be extracted from simulation experiments, robot demonstrations or human

demonstrations. Here, we used human demonstrations to calculate our target

coupling term, as described in Chapter 7 to keep the behaviour of our DMPs

as close to human-like obstacle avoidance as possible. Let our target Ct over N
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observations be represented as t, then we have the following relationship

t = ∑
i

γiRẏφi = Φγ (5.4a)

where, γ is the vector of γi and Φ is the matrix formed by Rẏφi for N observations.

Solving for γ with regularization gives

γ = (αI +ΦTΦ)−1ΦT t (5.4b)

For more freedom in fitting our model from the data, we take the different spatial

dimensions of our coupling term to be independent and fit three separate regression

models on the x,y and z dimensions, while using features from all dimensions.

This triples the total number of parameters in our model, giving it more freedom

to fit an arbitrary function.

5.3 Automatic Relevance Determination

The set of basis functions created on a grid might have a lot of features that

would actually prove unnecessary for most obstacles. Or they may not contribute

any new information to the coupling term. Keeping the whole basis makes the

algorithm slow as these features have to calculated at each step. Thus, we apply

the idea of Bayesian regression with automatic relevance determination [20] on

our basis to prune out unnecessary features.

The likelihood of the targets t is given by

p(t∣Φ,γ, β) =
N

∏
n=1

N(tn∣φnγ, β
−1) (5.5)

We introduce a factorizing prior over γ

p(γ∣α) =
M

∏
i=1

N(γi∣0, α
−1
i ) (5.6)

which will allow us to perform automatic relevance determination.

The posterior distribution is proportional to the product of the likelihood and the
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prior. As both the distributions are Gaussian, the posterior will also be Gaussian.

Using results for marginal and conditional distribution on Gaussian distribution,

we get the posterior over γ as

p(γ∣t,Φ,α, β) = N(γ∣m,Σ) (5.7)

m = βΣΦT t

Σ = (A + βΦTΦ)−1

where A = diag(αi). The values of α and β are determined by type-2 maximum

likelihood, also known as evidence approximation. This maximizes the maximum

likelihood function obtained by integrating out the weight parameters

p(t∣Φ,α, β) = ∫ p(t∣Φ,γ, β)p(γ∣α)dγ (5.8)

Because this is the convolution of two Gaussians, it can be evaluated to give the

log marginal likelihood as

log p(t∣Φ,γ, β) = logN(t∣0,C) (5.9)

= −
1

2
N log(2π) + log ∣C∣ + tTC−1t (5.10)

where

C = β−1I +ΦA−1ΦT (5.11)

Our aim is to maximize the log-likelihood with respect to α and β. By setting the

derivatives of the marginal likelihood to zero, we obtain the following estimates

αnew
i =

λi
m2
i

(5.12a)

(βnew)−1 =
∣∣t −Φm∣∣2

N −∑
i

λi
(5.12b)

λi = 1 − αiΣii (5.12c)

where mi is the i− th component of m and Σii is the i− th diagonal element of Σ.

We start with an initial value of β and α and iteratively update m,Σ and then β
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and α until a convergence criteria is reached.

As we maximize the log-likelihood iteratively, most of αi go to infinity, making

the corresponding weights γi have posterior distributions concentrated at zero.

The basis functions associated with these weights, therefore, play no role in the

prediction and are effectively pruned out, resulting in a sparse model.

28



CHAPTER 6

Convergence to goal

Adding coupling terms to a DMP raises concerns over its ability to converge to

the goal of the movement. One could expect that if the obstacle is very close to

the goal, it might get tougher for the DMP to reach the goal. For a stationary

obstacle, we can prove that our formulation of the coupling term satisfies the

Lyapunov stability criterion and converges to the goal for all starting points.

As t→∞ phase variable x goes to 0. Thus, the reduced DMP equation is

τ ÿ = αz(βz(g − y) − ẏ) +Ct (6.1a)

This can be simplified as

ÿ =K(g − y) −Dẏ +Ct (6.1b)

Ct = γ1Φ1 + γ2Φ2 + γ3Φ3 (6.1c)

where γi is the vector of weights γ and Φi is the matrix of the features φi, as

described before.

The point (y, ẏ, ÿ) = (g,0,0) is a stationary point for this equation. We can

construct a Lyapunov function V and prove V̇ < 0 ∀ (y, ẏ, ÿ)¬(g,0,0), hence

showing that all starting points of the system will converge to this stationary point.
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We use the energy function of a damped spring mass system ÿ =K(g − y) −Dẏ

V (y, ẏ, ÿ) =
1

2
(g − y)TK(g − y) +

1

2
ẏT ẏ (6.1d)

V̇ = ∆yV
T ẏ +∆ẏV

T ÿ (6.1e)

= −(g − y)TKẏ + ẏT ÿ (6.1f)

(6.1g)

From Equation 6.1c,

= −ẏTDẏ + ẏTCt (6.1h)

= −ẏTDẏ (6.1i)

as ẏ and Rẏ are rotated by π/2, making ẏTCt = 0. This proves that the DMP

would converge to the stationary point of (y, ẏ, ÿ) = (g,0,0) from any starting

point.
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CHAPTER 7

Experiments

We evaluate our coupling term formulation in several ways. We start with

a qualitative discussion of the ability of our coupling term to avoid obstacles

reactively, followed by its ability to model different types of user demonstrations,

per subject, across subjects and across obstacles. Then we move on to a description

of the ability of the thus learnt coupling term to avoid obstacles. We also test our

coupling term on movements of different durations.

First, we show the effectiveness of the new coupling term to avoid obstacles in

simulated settings, with hand-tuned parameters.

7.1 Evaluation of the coupling term on simu-

lated examples

To see the ability of our coupling term formulation to avoid extended and multiple

obstacles, we conducted several experiments on trajectories generated in simulation.

In order to do so, we created initial trajectories and fitted a DMP for them,

using Equation 3.4. Then, we equipped the initial DMP with a coupling term

Ctuned = γ1φ1 + γ2φ2 + γ3φ3 using our new features with hand-tuned parameters

k̃, β̃ and hand tuned weights γ̃1, γ̃2, γ̃3 and integrated it. While unrolling the DMP,

we progressively added obstacles in the path. An example of this is shown in

Figure 7.1. This example shows the reactive nature of the coupling term. The

obstacles appear suddenly as the DMP (with active coupling term) is unrolling.

Before any obstacle was present, the DMP follows the same path as the initial

trajectory. As obstacles appear, the coupling term changes the initial DMP path
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Figure 7.1: DMP motion generation with obstacles and coupling terms. Obstacle
appears after start of the motion. Until then, the obstacle avoidance trajectory (red)
is the same as the initial trajectory (blue). Obstacle 1 is avoided (purple) but quickly
afterwards, obstacle 2 appears. Obstacle 2 is avoided (brown) and the trajectory
converges to the goal.

to successfully avoid the two obstacles. Furthermore the DMP converges to the

goal, though it takes longer.

It should be noted that this experiment required hand-tuned parameters. If the

parameters were kept constant, but the size, position or time of appearance of

obstacle changed, the coupling term may no longer be able to avoid the obstacle.

This, again pointed towards the need for a more general basis of features.

So, next we show that the parameters γ for a general basis of features Φ, as

described in Chapter 5, can be learned to reconstruct coupling terms extracted

from human demonstrations. This means that with a more powerful coupling

term we were able to avoid obstacles in a human-like fashion.

7.2 Coupling term from human demonstrations

We collected human demonstrations of basic obstacle avoidance behaviors on

two experimental set ups. The goal of this experiment was two-fold: First, we
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Figure 7.2: The Vicon setup showing the start, goal points, cylindrical obstacle and a
human demonstrator guiding a set of markers through the environment.

wanted to verify that our coupling term formulation can represent coupling terms

extracted from human demonstrations. Second, learning parameters γ for an

overcomplete set of features. This will determine which features contribute towards

a general coupling term parametrization that can generate human-like obstacle

avoidance behaviour within the DMP framework.

Figure 7.3: A 2-D representation of the experimental set-up showing the to-and-fro
paths between start (blue) and goal (green) points, as well as the obstacle locations
(red). Note that the subject position is fixed, and hence the two paths need quite
different movements by the subject. Also, data to the goal from the start point, as well
as, from the goal to the start was recorded and analyzed.

To collect demonstrations, we used a 3D Guidance trakSTAR system that measures

the position of a magnetic sensor in a magnetic field set up by a transmitter.

Additionally, we collected data on a Vicon 3D Motion Capture system. The Vicon
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setup can be seen in Figure 7.2. In both set ups, subjects were asked to reach

with their hands from an initial position to a goal position, first without and then

with an obstacle in the path. Three types of obstacles - sphere, cylinder and

ellipsoid, placed at three different locations on two different paths were used. A

2-D representation of our start, goal and obstacle positions can be seen in Figure

7.3.
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Figure 7.4: Demonstrations in 3D with and without (a) a spherical obstacle and (b) a
cylindrical obstacle

On the trakSTAR set up, 7 subjects demonstrated 100 trajectories for both

initial and obstacle avoidance trajectories. On the Vicon set up we collected data

from 40 subjects, demonstrating 30 movements in each phase. A subset of the

demonstrated trajectories of one subject for a spherical (collected using trakStar)

and cylindrical (collected using Vicon) obstacle are shown in Figure 7.4.
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Figure 7.5: Dimensions 1, 2 and 3 of the target and reconstructed coupling term using
a basis of features, as calculated using regression with ARD for (a) Sphere and (b)
Cylinder. The fits are quite close to human demonstrations, showing that our coupling
term formulation is capable of reproducing human like behaviour. Notice that the two
targets are quite different in the first and third dimensions, but the features are able to
capture this difference well.

7.3 Modelling human behaviour

To fit this target coupling term collected from human demonstrations, we create a

basis of features as described in Chapter 5, with a total of 615 features. Finally,

we use Bayesian linear regression with automatic relevance determination, to find

the optimal set of parameters γ to reconstruct the human-like target coupling

term Ct. Representative results of the fit for the three dimensions of our coupling

term on the human demonstrations can be seen in Figure 7.5. These results

indicate that our features can indeed represent coupling terms extracted from

human obstacle avoidance movements. The upper row shows the coupling term

fit, when learning across all subjects on the trakStar data. Although subjects

displayed slight variations in avoidance on this set-up, our coupling term features

were able to capture the general behaviour well. Similarly, the lower row shows

the resulting coupling term fit on the data collected on the Vicon system.
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7.3.1 Limitations in modelling different behaviours

Subjects differ in their obstacle avoidance behaviours. We asked them to follow

a specific strategy in one experiment, but this strategy could be different from

subject to subject. Also, different obstacles need different strategies to be avoided.

For example, when avoiding a tall cylinder, most subjects move around it to reach

the goal, while when avoiding a sphere, they tend to move on top of it. Ellipsoids

seem to have the maximum variance across subjects, with some moving over them,

while others moving around them. Even for the same obstacle, subjects could

follow different strategies for the two paths shown in Figure 7.3 as they need quite

different movements of the arm.

Even though these seem to be similar situations, they lead to very different target

coupling terms to be fit for the same environment. This can be seen in Figure

7.5. The coupling terms are different in scale and shape for all the dimensions,

for the same obstacle position and initial path. Subjects deviate mostly only in

z-direction for a sphere, where as in almost all three dimensions for a cylinder.

Ideally, we would want out coupling term to be independent of these factors and

be able to model all of these movements.

Interestingly, our coupling term is able to model each of these behaviours individu-

ally very robustly. This means that our features are informative enough to extract

this information from the demonstration well. Even across to and fro movements

on the same trajectory (i.e., from start to goal and goal to start), the coupling

term fits the behaviour well. However, if we try to fit our coupling term across

different behaviours, by using target coupling term values for multiple subjects

with different obstacle avoidance behaviour, we find our coupling term does not

fit our target values so well.

This can be explained by the fact that these behaviours are basically different

‘modes’ of obstacle avoidance. For example, for one demonstration the coupling

term could have a large influence in the y-dimension while for the other in the

z-dimension. When trying to fit across these different modes, linear regression tries

to average out the two behaviours as the features are nearly the same for the start

of any movement (approximately 0). In such a scenario, the coupling term fits

the most consistent dimension, across demonstrations well, while the dimensions

that have a lot of variance across subjects are not fit that well. However, when

we consider back and forth movements on the same path, the ‘mode’ of obstacle
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avoidance remains the same, but the target Ct is inverted in one or more dimension.

As a result, our coupling term is able to capture these movements together. Figure

7.6 and 7.7 illustrate these points well for an ellipsoidal obstacle, which has a

large amount of variance amongst subjects.
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Figure 7.6: Dimensions 1, 2 and 3 of the target and reconstructed coupling term using
a basis of features, as calculated using regression with ARD across (a) path from goal to
start and (b) path from start to goal for an ellipsoid. The fits are quite close to human
demonstrations, showing that our coupling term formulation is capable of reproducing
human like behaviour from the same ‘mode’ of obstacle avoidance. Notice how the
coupling terms in Dimensions 1 and 2 mirror each other.

This could point to the need of an additional hidden variable that represents the

mode of obstacle avoidance when learning the coupling term.

7.4 Unrolling coupling term from human demon-

strations

A final step is to use the learnt parameters γ̂ to unroll the initially learnt DMP

now equipped with coupling terms. In order to do so, we use the initial DMP

with an added coupling term, such that the transformation system of the DMP is

given by

τ ÿ = αz(βz(g − y) − ẏ) + f̂initial + φγ̂ (7.1)
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Figure 7.7: Dimensions 1, 2 and 3 of the target and reconstructed coupling term using
a basis of features, as calculated using regression with ARD across (a) first mode and
(b) second mode for an ellipsoid. The fits are not that good anymore, showing that the
coupling term doesn’t generalize well across different behaviours. Notice how (a) avoids
the obstacle by more movement in y-dimension, as seen by higher coupling term while
(b) does so by movement in z-dimension.

where the features φ are computed on the fly and γ̂ were learnt from human

demonstrations. Note that in this setting, the output of the coupling term model

determines the next step of the DMP, which in turn influences the input of the

model in the next step. Thus, if the DMP starts to deviate from its path to a

region not generalized well by the model, this forms a feedback loop, causing the

divergence to increase. It is therefore important to use regression models that

generalize well to even unknown areas.

In our experiments, we tried to constraint the recombination weights of Equation

5.1b from reaching high values to keep the coupling term bounded at all times. If

the weights are allowed to grow too large, the DMP can deviate from its path due

to some unforeseen input and this can create a feedback loop that keeps diverging

the DMP.

The resultant obstacle-avoidance behaviour of our unrolled couping term is com-

parable to humans, as shown in Figure 7.8. When the obstacle is the same size

and at the same position as during the recording of the human demonstrations,

the resultant trajectory falls well within the variance of the demonstrations of the
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subject. This shows that our approach is able to avoid obstacles in a human-like

fashion. Even when we changed sizes and positions of the obstacle, as well as
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Figure 7.8: Our obstacle avoidance formulation rolled out for a mean initial demon-
stration produces a likely obstacles avoidance trajectory both in case of a (a) sphere
and (b) cylinder. The grey trajectories show initial demonstrations by subjects. Blue
trajectory was the initial DMP without an obstacle which results in the red trajectory
in the presence of obstacles. Our unrolled trajectory looks a lot behaviourally like a
human demonstration of obstacle avoidance.

duration of the movement, the coupling term works well, showing robustness to

slight changes in the environment. Figure 7.9 shows the behaviour of the coupling

term for a range of movement durations for the obstacle avoidance movement.

However, there can be situations, for example with an extremely big obstacle, when

the coupling term does not manage to avoid the obstacle any more. Also, majority

of our experiments are conducted on simple obstacles in static environments.

This raises concerns over the effectiveness of our method for moving obstacles,
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Figure 7.9: Different obstacle avoidance trajectories for different movement duration.
For faster trajectories, we observe a larger deviation due to a higher velocity of movement.
The coupling term is able to avoid the obstacle well, showing robustness to duration.

or complex non-convex obstacles. In such situations, when our method fails, we

might require replanning the original movement, or using reinforcement learning

to fine-tune specific components of the coupling term.

7.5 Automatic Relevance Determination on ba-

sis of features

Automatic Relevance Determination contributes a lot to the robustness of our

coupling term in modelling human demonstrations. Because of higher flexibility,

the ARD model fits the target coupling term better than usual linear regression,

as well as brings down the dimension of our basis to about 50 from 615 in some

dimensions. However, this comes at a cost. Since, we do impose an external

constraint on our weights in our approach of ARD (Chapter 5) our weights grow

very large.

Some statistics on the effect of ARD on our data are shown in Table 7.1.

Thus, even though it validates our hypothesis that the task of avoiding obstacles
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Dimension x Dimension y Dimension z

Mean for Regression Per Subject

w min
ARD -5.34E5 -3.05E5 -1.70E5

No ARD -15.10 -38.26 -24.92

w max
ARD 4.73E5 8.47E5 6.79E5

No ARD 17.09 40.32 26.79

Mean sq.

Error

ARD 0.50 5.29 1.47

No ARD 1.48 13.54 3.89

Basis

Functions

ARD 48.89 62.67 40.28

No ARD 615 615 615

Regression Across subjects

w min
ARD -7.9E5 -1.5E6 -1.88E6

No ARD -144.01 -685.25 -208.46

w max
ARD 2.7E5 2.10E6 1.90E6

No ARD 145.09 1224.35 710.36

Mean sq.

Error

ARD 83 189 175

No ARD 615 615 615

Basis

Functions

ARD 6.22 17.40 7.37

No ARD 10.03 68.24

Table 7.1: Table showing the results of regression with and without ARD. Though
ARD brings down the dimension of the basis function by a lot and decreases the
mean squared error, the learnt weight magnitudes shoot up. This can lead to
divergence of the DMP, and hence is not suggested.

can be done with a sparser basis, we cannot use these weights for unrolling our

DMP. A DMP with very large magnitudes of coupling term weights often diverges

due to the feedback effect explained before. However, if we could constraint the

weights of our model, by using a forced regularizer, or added external constraints,

we might be able to use this much sparser set of basis vectors.

7.6 Experiments on a simulated robot arm

To demonstrate the feasibility of our work on a realistic robotic set-up, we

implemented the DMP system with obstacle avoidance on a simulated robot arm,
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consisting of a bi-manual set-up of two KUKA Lightweight arms and an active

vision head. Point-to-point movements with obstacle avoidance were executed

with one arm. The DMP system created desired trajectories in the 3D task space

of the robot, while an inverse kinematics formulation with null space optimization,

followed by an inverse dynamics controller, realized these desired trajectories.

This is a direct application of our method described above.

Some snapshots of the movement can be seen in Figure 7.10, and in Figures A.1,

A.2, A.3 in the Appendix.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.10: Simulation Experiment 1: (a), (b), (c) show the initial trajectory.
(d), (e), (f) show the initial trajectory without any obstacle avoidance in the
presence of a spherical obstacle. The end-effector hits the obstacle. (g), (h), (i)
show the obstacle avoidance trajectory obtained using the coupling term. The
end-effector manages to avoid the obstacle by moving over it.
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CHAPTER 8

Future work

Our experiments on coupling terms for obstacle avoidance, as we have described

so far, point out some flaws, which can be addressed in future work.

1. Our coupling term is purely local and hence is a sub-optimal solution. It

might also fail to find a solution to reach the goal, and get stuck, even when

a solution exists. In such a scenario, we propose planning a new original

path and starting all over again or using Reinforcement Learning to fine

tune specific components of the coupling term.

2. Our coupling term does not take the speed of the obstacle into account. This

feature might be important when avoiding moving obstacles in a dynamic

environment. One simple work around is using the relative velocity between

the end-effector and obstacle in Equation 4.1. But it might be useful to add

more informative features about obstacle velocity.

3. Currently, we use only the end-effector center as the point that is avoiding

obstacles. For a more robust obstacle avoidance with a real robot, it might

be useful to include more points on the manipulator arm and robot body,

like the elbow in our obstacle avoidance formulation.

4. The coupling term is unable to model the target Ct across different obstacle

aviodance behaviours. We might need an additional hidden variable that

chooses the behaviour needed to be modelled by the coupling term.

Apart from the coupling terms for obstacle avoidance, learning coupling terms can

be applied to almost any task that needs an online modification of a pre-planned
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path. For example, avoiding robot’s own body and joint angle limits. These

can be directly extrapolated from our current work. Bi-manual tasks that need

force feedback for coordination, or learning sensor models that excite a particular

behaviour can be other applications. By comparing with learnt sensor models

from previous experiences, coupling terms can be associated with skill memories.

In our work, we hand-design our features to some extent. It would be interesting

to be able to learn these features automatically from data.

Online modification of a plan based on feedback is an important step towards

autonomous manipulation. We try to introduce the idea of learning these coupling

terms either from human demonstrations or simulated experiments in application

to obstacle avoidance. More work needs to be done on finding ways that can learn

powerful coupling terms for other tasks.
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CHAPTER 9

Conclusion

Interpreting the environment and modifying a planned strategy based on the

feedback can be implemented using coupling terms in DMPs. Here, we have used

coupling terms to equip the DMP with obstacle avoidance features that remain

dormant most of the time, except when an obstacle is detected in proximity. In this

work, we propose a method to learn this coupling term from human demonstrations

using a basis of simple features. We have shown the potential of our coupling term

function to model different kinds of obstacle avoidance behaviours. Furthermore,

we have shown that the open parameters of the proposed coupling term formulation

can be learnt from human demonstrations. Our evaluation demonstrates that our

formulation is capable of reproducing human obstacle-avoidance behaviour in a

reactive manner quite well. Also, when unrolled on a new obstacle, the coupling

term does fairly well over a range of sizes and positions of obstacles, as well as

movement durations.

This works forms a good foundation for learning other coupling terms that use

feedback from the environment to modulate a planned trajectory online. Several

situations like joint angle limits, a robot avoiding its own body, etc can be directly

extrapolated from and combined with our work on obstacle avoidance.
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APPENDIX A

Appendix

A.1 Experiments on a simulated robot arm

To demonstrate the feasibility of our work on a realistic robotic set-up, we

implemented the DMP system with obstacle avoidance on a simulated robot arm,

consisting of a bi-manual set-up of two KUKA Lightweight arms and an active

vision head. Point-to-point movements with obstacle avoidance were executed

with one arm. The DMP system created desired trajectories in the 3D task space

of the robot, while an inverse kinematics formulation with null space optimization,

followed by an inverse dynamics controller, realized these desired trajectories.

This is a direct application of our method described above.

Some snapshots of the movement can be seen in Figures 7.10, A.1, A.2, A.3

As can be seen, our approach realizes successful obstacle avoidance behaviour in

a natural looking way. The results can be found at http://www-clmc.usc.edu/

~arai/pub/humanoids2014.mov.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Simulation Experiment 2: This trajectory is faster than simulation
experiment 1. (a), (b), (c) show the initial trajectory. (d), (e), (f) show the initial
trajectory without any obstacle avoidance in the presence of a spherical obstacle.
The end-effector hits the obstacle. (g), (h), (i) show the obstacle avoidance
trajectory obtained using the coupling term. The end-effector manages to avoid
the obstacle by moving over it.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Simulation Experiment 3: This trajectory is slower than exper-
iments 1 and 2. (a), (b), (c) show the initial trajectory. (d), (e), (f) show the
initial trajectory without any obstacle avoidance in the presence of a spherical
obstacle. The end-effector hits the obstacle. (g), (h), (i) show the obstacle avoid-
ance trajectory obtained using the coupling term. The end-effector manages to
avoid the obstacle by moving over it.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Simulation Experiment 4: (a), (b), (c) show the initial trajectory.
(d), (e), (f) show the initial trajectory without any obstacle avoidance in the
presence of a ellipsoidal obstacle. The end-effector hits the obstacle. (g), (h), (i)
show the obstacle avoidance trajectory obtained using the coupling term. The
end-effector manages to avoid the obstacle by moving around it.
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