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Abstract

Since the 1950s,  robotics research has sought to build a general-purpose agent capable 
of autonomous, open-ended interaction with realistic, unconstrained environments. 
Cognition is perceived to be at the core of this process, yet understan#ding has been 
challenged because cognition is referred to differently within and across research areas, 
and is not clearly defi ned. The classic robotics approach is decomposition into function-
al modules which perform  planning,  reasoning, and  problem solving or provide input 
to these mechanisms. Although advancements have been made and numerous success 
stories reported in specifi c niches, this systems-engineering approach has not succeeded 
in building such a cognitive agent.

The emergence of an action-oriented paradigm offers a new approach: action and 
perception are no longer separable into functional modules but must be considered 
in a complete loop. This chapter reviews work on different mechanisms for action-
perception learning and discusses the role of  embodiment in the design of the underly-
ing  representations and learning. It discusses the evaluation of agents and suggests the 
development of a new embodied Turing Test. Appropriate scenarios need to be devised 
in addition to current competitions, so that abilities can be tested over long time periods.

Introduction

In June 2014, the University of Reading reported that a machine passed the fa-
mous  Turing Test: a computer program impersonated a 13-year-old Ukrainian 
boy, called Eugene Goostman, and was able, through text interface, to make a 

From “The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science,” 
Andreas K. Engel, Karl J. Friston, and Danica Kragic, eds. 2016. Strüngmann Forum Reports, vol. 18, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03432-6. 



310 J. Bohg and D. Kragic 

suffi cient number of interrogators believe that they were communicating with 
an actual human being. This news attracted quite a bit of attention but not as 
much as one might have thought, since passing the  Turing Test had been per-
ceived to be proof that machines could think.

Turing proposed a general test of intelligence to measure the competency 
of an artifi cial system “in all purely intellectual fi elds.” He believed that by 
the year 2000, machines would be capable of this mental process, classically 
labeled cognition. He discussed the problems associated with deciding when a 
machine would convincingly reach this level and proposed that the ambiguous 
question of whether machines could think be replaced by an imitation game 
which the machine would have to win to prove cognitive competency (Turing 
1950). This test, he imagined, would assess the intellectual capabilities of the 
agent independent of the actual mechanism or principle behind it. Turing’s 
original proposal and subsequent versions of the test (e.g., as is used in the 
Loebner Prize) did not attract signifi cant attention in the robotics community.

One possible explanation for this relative disinterest might be found in an 
interesting parallel (Russell and Norvig 2003) between the quest for  artifi cial 
intelligence (AI) and artifi cial fl ight: Aeronautical engineering is not defi ned 
as making “machines that fl y so exactly like pigeons that they can fool even 
other pigeons.” Aeronautic researchers are interested in the principles of aero-
dynamics. Thus, by analogy, AI researchers seem to have been interested in 
uncovering the underlying principles of intelligence rather than in duplicating 
an exemplar.

Early Approaches in Artifi cial Intelligence

In addition to suggesting the test, Turing (1950) theorized about the underlying 
principles. He favored the idea of a learning machine whose brain would be 
similar to that of a child (i.e., a blank slate). Certain built-in rules of operation 
for logical inference were possible, but these would be subject to change dur-
ing learning. Interestingly, however, he did not consider it necessary for the 
agent to have limbs or eyes.

Subsequent researchers have dedicated signifi cant attention to the problems 
that a machine would face during the proposed  imitation game: understand-
ing and producing natural language text, representing general knowledge and 
information from the ongoing conversation, reasoning to answer questions or 
to draw novel conclusions, and learning from experience to adapt to new situ-
ations. Special symbolic rule-based planners were developed that rely on the 
existence of an internal world model. Given a certain world state and a goal, 
these planners could devise a strategy to attain this goal. The fi rst planning 
system, STRIPS, was developed for the Shakey Robot at Stanford Research 
Institute (Fikes and Nilsson 1971) and functioned independently to how the 
robot built the world model, recognized certain objects, or executed planned 
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actions. These problems were supposed to be solved independently by general-
purpose, task-independent black-box modules. Signifi cant progress was made 
early on in terms of these planning algorithms. Based on this work, supercom-
puters are now able to beat the best human players in chess or Jeopardy. Yet 
robots are still unable to demonstrate the autonomy and skill of a one-year-old 
child in terms of perception and motor control. We suggest that the greatest 
challenge to developing a general-purpose autonomous agent arises at the in-
terface between the agent and the world, not at logical reasoning over readily 
given abstract symbols.

Emergence of the Action-Oriented Paradigm in Robotics

Moravec (1988) pointed out the following paradox: high-level symbolic rea-
soning, which requires relatively high effort by humans, seems to be relative-
ly easy to automatize. However, tasks that humans can perform effortlessly 
(e.g.,  grasping of arbitrary objects or manipulation of tools) seem diffi cult for 
machines to achieve. While we are consciously aware of symbolic reason-
ing, these latter tasks are controlled by subconscious processes and thus they 
are much harder to reproduce. Moravec claims that these processes developed 
over thousands of years of  evolution while  abstract reasoning is a rather recent 
development.

Related to this, Brooks (1990, 1991b) proposed a new way to think about 
 artifi cial intelligence. In contrast to Turing, he believed that a machine needs 
limbs and eyes to interact with a complex and dynamic environment. He reject-
ed the focus on internal general-purpose representations of the world, symbolic 
reasoning, and a functional decomposition of intelligence. Instead, he defi ned 
intelligence in terms of a combination of simple behaviors, which were defi ned 
by directly connecting perception modules to controllers. These behaviors 
were combined in a structure that Brooks called the  subsumption architecture. 
He could show that robots using this idea would expose intelligent behavior 
in dynamic and cluttered environments. They were even able to show simple 
grasps and navigate in mapped environments, without any need for complex 
internal representation and reasoning. These robots had no  memory; instead 
they relied on sensors for continuous feedback from the world around them.

Parallels between Cognitive Science and Robotics

Almost simultaneously to Brooks’ proposal, the early work of Varela et al. 
(1992) established the “enactive approach” to cognition. Similarly to Brooks, 
Varela and colleagues did not consider cognition to be the process of extract-
ing general-purpose, task-independent representations of the world. Instead, 
they held that cognitive processes of internalizing the external and building 
structures are guided by action. This is further related to the  internal simulation 
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theory in which the brain simulates the environment and reasons on it before 
acting  (Jeannerod 1988). Clark’s  action-oriented representation (Clark 1998) 
and O’Regan and Noë’s (2001)  sensorimotor contingency (SMC) theory both 
support this work. According to SMC theory, the agent’s SMCs are consti-
tutive for cognitive processes and are defi ned as law-like relations between 
movements and associated changes in sensory inputs that are produced by the 
agent’s actions. Accordingly, “seeing” cannot be understood as the processing 
of an internal visual “representation”; seeing corresponds to being engaged 
in a  visual exploratory activity, mediated by knowledge of SMCs. Additional 
evidence from psychology and neuroscience stipulates that action in biologi-
cal systems participates as a generative model in perceptual processes and in 
structuring knowledge about the world (Gallese et al. 1996; Fadiga et al. 1999; 
Borroni et al. 2005).

Robotics Research Today

Although the proposal by Brooks is now widely considered to have marked a 
paradigm shift in robotics, it still remains to be shown whether these ideas can 
yield more high-level autonomous behavior than that of insects. However, the 
robotics community has placed more research effort on the interface between 
an agent and its environment. This does not mean that robotics has agreed on 
one approach. The classic approach to  AI and new directions coexist and are 
potentially combined. As it happens, this situation is similar to the develop-
ment that occurred in cognitive science (Engel et al. 2013).

Current research in robotics is largely shaped by the  systems  engineering 
approach (Brock 2011), which very often aims at solving problems related to 
a specifi c application. Within the current research funding landscape, prog-
ress has to be fast and verifi able. Today’s robots are complex systems that 
require expertise in many different subjects. A roboticist may commonly be 
specialized in one of them and try to abstract away the others. For example, 
researchers who are experts in control may know little about visual perception. 
Therefore, these modules are abstracted away and treated as black boxes. Any 
potentially complex two-sided interaction between control and perception is 
replaced by a simplifi ed interface. Representations may be treated as general 
purpose and task independent. Very often, symbolic planners sit at the center 
of these approaches and devise plans that are computed over symbols provided 
by the black-box perception modules. Resulting action sequences are often ex-
ecuted in an open-loop manner without checking to see whether the expected 
effect has actually been achieved.

The research area of  computer  vision is rooted in the demand of robot-
ics research for general-purpose, task-independent representations of semantic 
entities (Horn 1986). Due to the diffi culties inherent in this problem, research 
in computer vision has developed away from robotics and now has little to do 
with it. First and foremost, it rarely addresses challenges that arise in robotics, 
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such as real-time requirements or the possibility to act in the environment for 
exploration. Similarly, in the area of control, the generation of movement is 
mainly studied in isolation. Feedback controllers usually close the loop around 
joint angles, velocities, or motor torques. Not as much focus has been placed 
on feedback about the environment structure. If this kind of feedback is re-
quired, it is often provided by precise motion capture systems in the hope that 
sometime in the future  computer  vision researchers will deliver the promised 
reliable general-purpose black boxes.

These approaches have brought tremendous progress in their associated re-
search areas. However, when trying to unite them within a robotics system 
through the  systems- engineering approach, they are only successful in restrict-
ed application scenarios that are not open-ended, largely static, and controlled. 
In general, current robots lag surprisingly far behind humans although they 
have faster and less noisy sensors and actuators and can perform rapid decision 
making and control (Wolpert et al. 2011). If we are still striving to discover 
the underlying fundamental principles between autonomous and purposeful 
behavior, we have not yet found the key.

Many people believe that the action-oriented paradigm offers the key to 
permit new insights. We have seen the emergence of the fi eld of  developmen-
tal  robotics, which strives toward learning machines, already proposed by 
Turing. However, developmental roboticists also emphasize the importance 
of the learning agent being embodied (Lungarella et al. 2003). Below, we re-
view a portion of the work that follows the action-oriented paradigm and focus 
mainly on mechanisms for action-perception learning. We focus on the role of 
embodiment in the design of the underlying representations as well as for the 
specifi c learning mechanism.

Representations

General-purpose autonomous robots cannot be  preprogrammed for all the 
tasks they will be required to do; just like humans, they should be able to 
gather information from different sources and learn from the experiences of 
both humans and other robots. Thus, the ability to acquire new skills and adapt 
existing ones to novel tasks and contexts is a necessity. For some natural do-
mains (e.g., cooking and meal preparation), models or plans for different tasks 
are already available. For example, web pages such as ehow.com and wiki-
how.com provide simple and detailed instructions on how to plant a tree or 
make lemon curd. These sites contain thousands of  directives for everyday 
activities: about 45,000 on wikihow.com and more than 250,000 on ehow.com. 
Using written and structured instructions is common for humans. Many repeti-
tive and dangerous tasks in factories and laboratories have natural language 
and graphic workfl ow specifi cations that are similar to task instructions in the 
World Wide Web.

From “The Pragmatic Turn: Toward Action-Oriented Views in Cognitive Science,” 
Andreas K. Engel, Karl J. Friston, and Danica Kragic, eds. 2016. Strüngmann Forum Reports, vol. 18, 

series ed. J. Lupp. Cambridge, MA: MIT Press. ISBN 978-0-262-03432-6. 



314 J. Bohg and D. Kragic 

A natural idea is to enable robots to do the same. However, this poses sev-
eral challenges. To look at, listen to, and perceive an instruction, robots need 
to be able to understand text, video, spoken commands, or even all of them at 
the same time. They need to be able to understand concepts that are symbolic 
and relate them to sensory information. For example, an object such as “fork” 
in spoken or written instructions needs to relate to specifi c visual features that 
can be extracted from an image. In addition, the representation of a fork needs 
to be such that the robot can distinguish it from a knife.

A classic approach is to develop general-purpose, task-independent rep-
resentations of semantic entities needed in these aforementioned tasks. 
Representations like this promise effectiveness through compression of a lot 
of information into a single symbol, which then is able to generalize to all pos-
sible situations and contexts.

Humans use visual and other sensory feedback extensively to plan and ex-
ecute actions. However, this process is not a well-defi ned one-way stream: 
how we plan and execute actions depends on what we already know about (a) 
the environment in which we operate (context), (b) the action we are about 
to undertake (task), and (c) the result expected from our actions (effect). This 
insight has been picked up in robotics and resulted in many models that try to 
represent actions and percepts jointly instead of fi nding the one representation 
that matches all purposes. The concept of  affordances, as proposed by  Gibson 
(1977), has inspired representations, especially in  grasping and interaction 
with objects.

To a certain degree, affordances can be observed in images. In several 
works (Bohg and Kragic 2009; Saxena et al. 2008; Stark et al. 2008), relations 
between visual cues and grasping affordances are learned from training data. 
In Stark et al. (2008), object grasping areas are extracted from short videos 
of humans interacting with the objects. In Bohg and Kragic (2009) as well as 
Saxena et al. (2008), a large set of two-dimensional object views are labeled 
with grasping points. Early work on functional  object recognition (Rivlin et al. 
1995; Stark and Bowyer 1996) can be seen as a fi rst step toward recognizing 
affordances from images. Objects are modeled in terms of their functional parts 
(e.g., handle, hammerhead; Rivlin et al. 1995) or by reasoning about shape in 
association to function (Stark and Bowyer 1996). In these approaches, the rela-
tion between objects and action is usually predefi ned by humans.

As pointed out by Sloman (2001), we are not consciously aware of a signifi -
cant amount of human  visual processing: we do not experience using optical 
fl ow to control our posture nor are we aware of the saccades and fi xational 
eye movements that allow us to negotiate with the complexity of everyday 
scenes (Koch and Ullman 1985). Therefore, these processes are not easy for 
us to reproduce in an artifi cial system. It has been argued that representations 
should only be constructed by the system itself through interaction  with and 
exploration of the  world  rather than through a priori specifi cation or pro-
gramming (Granlund 1999). Thus, objects should be represented as invariant 
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combinations of percepts and responses, where the invariances (which are not 
restricted  to geometric properties) need to be learned through interaction rather 
than specifi ed or programmed a priori (Granlund 1999). A  system’s ability to 
interpret the external  world is dependent on its ability to interact with it. This 
interaction structures the relationship between perception and action.

In robotics, this can be a slow process, due to the challenges involved when 
extensive physical interaction is required. Over the last several years, howev-
er, advanced oculomotor and hand-eye systems have been demonstrated (e.g., 
Moren et al. 2008; Montesano et al. 2008; Kraft et al. 2008; Rasolzadeh et al. 
2010). There are approaches that let the robot interact with its environment 
and learn through trial and error. One example is a cognitive model for grasp 
 learning in infants (Oztop et al. 2005). A model for learning  affordances using 
Bayesian networks embedded within a general developmental architecture has 
been proposed by Montesano et al. (2008). Kraft et al. (2008) proposed object-
action complexes as semi-supervised procedures for encoding sensorimotor 
relations and showed how this can be used to improve the robot’s inner model 
and behavior. The idea was further developed by Song et al. (2010), where 
the relationships between object, action, constraint features, and task were en-
coded using Bayesian networks.

These approaches often consider actions at discrete moments in time (e.g., 
a grasp when approaching but not yet making contact with the object) or as a 
discrete symbol (e.g., pushing, pulling, grasping, pouncing). The representa-
tion of movement over time and how to couple it to sensory input is also an 
active area of research. One popular representation of this kind has been  dy-
namic movement primitives (Ijspeert et al. 2002; Schaal et al. 2007), proposed 
for both feedforward and feedback motor commands. Dynamic movement 
primitives relate to  optimal control theory approaches such as minimum jerk 
trajectories (Flash and Hogan 1985), as well as  machine learning approach-
es such as hidden Markov models (Billard et al. 2004; Inamura et al. 2004). 
Dynamic movement primitives have been coupled to sensory input through 
maintaining a visual representation of the goal point and adapting the goal’s 
tracked position (Pastor et al. 2009). Other ways to shortcut perception have 
been to use motion capture systems or easy-to-detect fi ducial markers (Calinon 
2009). Only recently have we seen how low-level sensory feedback can defi ne 
the goal directly (Pastor et al. 2011). During execution, a dynamic movement 
primitive is adapted such that the robot feels the same as when the movement 
was demonstrated.

 Sensorimotor knowledge in humans is structured as of childhood, and this 
type of lifelong learning has been the focus of developmental approaches in 
robotics (Pfeifer and Scheier 1999; Kuniyoshi et al. 2003; Lungarella et al. 
2003). Thus far, however, developmental approaches have been demonstrated 
on rather simplistic problems. If a large corpus of data is available, informed 
learning approaches, such as  imitation  learning (Schaal 1999), can be applied.
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Learning and Priors

Much of the work on  learning and  priors was inspired by  Piaget’s ideas of 
 assimilation and  accommodation. These two complementary processes of  ad-
aptation enable the experiences of the external world to be internalized. The 
problem of assimilation has been addressed more widely, given that some 
predefi ned structure has been used for classifi cation of new experiences. The 
problem of accommodation requires the representation of knowledge structure 
to be changed as the new data is gathered and requires more advanced learning 
techniques to be employed.

An organism cannot develop without some built-in ability. However, if all 
abilities are built in, the organism is unable to develop. There is an optimal 
level for how much phylogeny should provide versus how much needs to be 
acquired during the lifetime.

A human spends years interacting with its environment before it can mas-
ter certain complex cognitive or motor tasks. At the same time, robots and 
the computational modules are often expected to learn from very little data. 
 Imitation may be a very good way to bootstrap an artifi cial system. Even then, 
during its “lifetime,” a robot will encounter so many more situations than what 
could possibly have been demonstrated to it by a human teacher. In fi elds such 
as  computer  vision or  speech processing, “ big data” (visual or auditory data 
annotated with strong or weak semantic labels) has become increasingly more 
available, impacting the very type of research that is being performed in these 
areas. Methods that can be trained on these massive amounts of data are cur-
rently outperforming previous state-of-the-art approaches (Halevy et al. 2009). 
In robotics, there are no labeled databases of this order of magnitude to help 
bootstrap the system. This is most likely due to the complexity of a robot sys-
tem, which makes it hard to collect and label these massive amounts of data. 
In contrast to computer vision and speech-processing data, a data point in a 
robotics database also depends on an action. Therefore, the usual assumption 
of independent and identically distributed data cannot be as easily made in a 
robotics system.

Robotic systems receive a continuous stream of sensory (visual, haptic, 
auditory) data that is currently largely unused. Data is often extracted at arbi-
trary discrete points in time and then processed independently of the other data 
points in the time series. Exceptions to this are feedback controllers that enable 
robots to execute movements toward a goal or along a trajectory. Feedback on 
some state variable that is actively controlled is continuously gathered, and the 
appropriate action is computed to minimize the error between the actual and 
desired state. Most commonly, these state variables contain joint angles and 
velocities, forces, and torques which act on joints directly or on end-effectors. 
The state may also contain information from vision sensors, such as the pose of 
objects in the environment. For these quantities, good models (e.g., rigid body 
motion or dynamics) exist to help the controllers design and compute the next 
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best action based on carefully selected sensory feedback. For more complex or 
multimodal data or more complex goals, modeling the mapping between the 
sensory state and next best action becomes much harder.

Although the “big data” paradigm holds great promise for learning some 
of these aspects, it is unclear how the data which a robotics system produces 
(time-series, multimodal and synchronized in time, structured) can be lever-
aged. Some  examples exist for learning from time-series data, but the majority 
of work focuses on learning from discrete data samples.

Currently, the big data paradigm considers the problem of discovering cor-
relations in data. However, robotics seems to be largely dominated by another 
structuring principle in data: causality. Discovering  causality from data is dif-
fi cult (Pearl 2009). Nonetheless, intuitively, understanding causality seems to 
be the key to predict the changes in sensory percepts after an agent executes 
an action.

Embodiment and Imitation

From  the viewpoint of morphology, our bodies, actuators, and sensors exist to 
support effective action (Kuypers 1973) but there is nothing from the  perspec-
tive of robotic systems that requires a cognitive system to take human shape. 
Ziemke’s framework of embodied systems distinguishes fi ve types of embodi-
ment: structural coupling, historical embodiment, physical embodiment, or-
ganismoid embodiment, and organismic embodiment (Ziemke 2003). A single 
type of embodiment, however, cannot guarantee that the resultant cognitive 
behavior will be in any way consistent with human models or concepts.

Transfer of information between a teacher (human/robot) and a student 
(robot) requires a common  knowledge representation. When the human and 
student have identical motor and sensory capabilities, the task may be simply 
to transform the action of one to the other by changing the frame of reference. 
Such transfers are not commonly possible, given that embodiments and asso-
ciated capabilities often differ. To ensure compatibility with human concepts, 
there may be a need for higher similarity to humans regarding physical move-
ment, interaction, exploration, and perhaps even human form (Brooks 2002).

In terms of object  grasping and manipulation, the naïve approach to facili-
tate grasp transfer between different embodiments is to model the observed ac-
tion of the teacher and map all the action parameters to the robot hand, which 
is commonly referred to as the “action-level” imitation (Alissandrakis et al. 
2002). However, since different embodiments have different capabilities, the 
action required to achieve the goal may be different.

 Imitation  learning is an effective approach for teaching robots simple 
tasks (Billard et al. 2008). The learning paradigm based on an internal model 
(Wolpert and Kawato 1998) has received considerable attention. The work by 
Rao et al. (2007) implements an internal model through Bayesian networks. 
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Demiris and Johnson (2003) show that the internal models that represent the 
brain circuitry subserving sensorimotor control also participate in action rec-
ognition. They are used to predict the goal of observed behavior and activate 
the correct actions to maintain or achieve the “goal” state. Later work (Oztop et 
al. 2005) extends the use of an internal model to the domain of visual-manual 
tasks. We believe that  future research in this area will address the interplay 
between the embodiment,  knowledge representation, and learning in more de-
tail. Abstraction from the embodiment may be a key, but one wonders to what 
extent this is reasonable to do.

Evaluation and Verifi cation: An Embodied Turing Test

While the aforementioned proposals have been verifi ed in specifi c scenarios 
and applications, we lack an understanding of how big their potential is toward 
the development of general-purpose  cognitive agents capable of autonomous 
and open-ended interaction with realistic, unconstrained environments. How 
can an action-oriented approach actually be verifi ed and compared to other 
approaches?

Several tests have been proposed to evaluate general cognitive capabilities 
of an artifi cial agent, the most famous being the Turing Test. Turing (1950) was 
interested in the potential mechanisms and principles behind rational human 
 reasoning, which we nowadays summarize with the somewhat fuzzy term of 
cognition. Instead of evaluating these mechanisms themselves, he proposed to 
measure the resemblance of an agent to a real person in a dialogue scenario. 
In this way, he proposed a way to circumvent the diffi cult problem of defi n-
ing precisely the mental process of  thinking. Turing believed that the exact 
computational structure of the mechanism does not matter as long as the ar-
tifi cial agent is perceived to perform rational human reasoning. Furthermore, 
he believed that equipping the machine with a body was entirely beside the 
point. The actual Turing Test has played a signifi cant role in the fi eld of  human-
machine interaction. Although new versions of this test have been proposed 
(Harnad 1991; Marcus 2014), only the total Turing Test begins to test senso-
rimotor capabilities.

To verify the methods proposed by the action-oriented paradigm, do we 
need a new  embodied Turing Test?

One option would be to take the Turing Test and use it to evaluate not the 
actual mechanisms but rather the resemblance of how an artifi cial agent acts 
in the world compared to how a person would act. An external observer would 
decide whether a robot that is performing certain tasks in an environment is 
acting autonomously or is teleoperated. The tasks for the robot could involve 
manipulation and  locomotion tasks of different degrees of diffi culty, in differ-
ent environments (e.g., household or disaster relief scenarios). Tasks could also 
involve physical interaction or collaboration with other agents or humans (e.g., 
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preparing a meal, clearing a dinner table, assembling furniture, rescuing a person 
from a disaster site, or collaborating with a person to perform assembly tasks).

The advantage of this type of test is that a specifi c task would need to be 
autonomously performed in a fl uid manner that resembles how a human would 
perform  the task. We imagine this human manner to involve a certain level of 
dexterity, fl exibility in the presence of a dynamically changing environment, as 
well as robustness to noise and failures.

It is debatable whether the criterion of resemblance to human fl uidity when 
performing a task is desirable. It may be important in tasks where the robot is 
collaborating or interacting with humans such that its actions are predictable, 
but may have limited relevance when it comes to other (e.g., household) tasks.

A Robotics Challenge

Several robotics competitions have been set up to evaluate the performance 
of artifi cial agents, not only for purely intellectual tasks but also for tasks in-
volving physical interaction: RoboCup, RoboCup@Home, DARPA Learning 
Locomotion, DARPA Autonomous Robotic Manipulation, and the DARPA 
Robotics Challenge. These challenges usually have well-defi ned goals that re-
volve around a specifi c scenario, such as soccer, and can easily be verifi ed. The 
scenarios are usually formulated broadly so that the goals can be adapted and 
made more or less diffi cult from phase to phase. Furthermore, such competi-
tions have the ability to bundle forces and focus them onto one goal (Marcus 
2014). The spirit of competition seems to be a powerful source of motivation 
among researchers.

Do We Need a New Embodied Turing Test?

Without a doubt, it would be advantageous to have a test that could easily 
evaluate a set of well-defi ned goals. However, defi ning these goals poses the 
initial challenge. Although competitions can serve as a powerful motivator, 
experience shows that no matter how carefully such goals are defi ned or out 
of which original question they came, what counts in the end is winning. The 
hope or intention of discovering principles behind, for example, intelligence or 
autonomy, may be rejected in favor of getting the task done. Certainly this can 
be observed in earlier attempts to pass the Turing Test through the use of parlor 
tricks and purposeful deceit (Marcus 2014). All of the above-mentioned  robot 
competitions encourage what is commonly referred to as hacking; that is,  engi-
neering solutions which exploit a fi xed structure in a scenario, thus sacrifi cing 
the generality of solutions. Nevertheless, competitions do offer clear demon-
strations of which type of task can be achieved, and some fundamental insights 
are inevitably gained, although less than what one would hope for or expect.

Once a problem has been solved and its inner workings computationally 
and algorithmically revealed, we often no longer believe that the associated 
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artifi cial system is intelligent. It is just computation. We wonder whether it is 
appropriate to let a person judge the resemblance of an agent executing a task 
to a real human doing the same. This may shift the focus from fulfi lling a spe-
cifi c task to that of doing it robustly and fl uidly.

Conclusions

Much can be said about perception and action as well as the work that has 
been done over the last sixty years. Here we reviewed cases which show some 
of the relations across different fi elds of research. Importantly, cognition is a 
process that needs to be studied and approached as such. Proper representa-
tions and learning mechanisms are necessary to meet the goal of developing 
autonomous agents capable of open-ended interaction. Equally important is 
the issue of how to assess and verify that an agent has made the proper choices. 
To evaluate and verify the capabilities of a robot, we suggest that the well-
known Turing Test be reworked into an embodied Turing Test. Many scenarios 
can be envisioned for such a test; however, we believe short, competition-like 
scenarios are insuffi cient. Appropriate scenarios need to be devised that will 
test a robot’s ability over long periods of time.
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