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Abstract— In this paper, we consider the problem of robotic
grasping of objects when only partial and noisy sensor data
of the environment is available. We are specifically interested
in the problem of reliably selecting the best hypothesis from
a whole set. This is commonly the case when trying to grasp
an object for which we can only observe a partial point cloud
from one viewpoint through noisy sensors. There will be many
possible ways to successfully grasp this object, and even more
which will fail. We propose a supervised learning method that is
trained with a ranking loss. This explicitly encourages that the
top-ranked training grasp in a hypothesis set is also positively
labeled. We show how we adapt the standard ranking loss
to work with data that has binary labels and explain the
benefits of this formulation. Additionally, we show how we can
efficiently optimize this loss with stochastic gradient descent.
In quantitative experiments, we show that we can outperform
previous models by a large margin.

I. INTRODUCTION

Grasping unknown objects from partial and noisy sensor
data is still an open problem in the robotics community. For
objects with a known polygonal mesh model, experience
databases can be built offline and serve as grasp look-up
table once this object has been detected in the scene. In
[19, 13, 8] it has been shown that in this case robust grasping
and manipulation can be achieved by applying force control
and exploiting constraints in the environment. However, to
transfer successful grasps between different objects of which
only partial and noisy information is known, remains a
challenge.

There are many supervised learning approaches towards
grasping. The majority of those formulate grasping as a
problem of classifying a grasp hypothesis as either stable
or unstable. A grasp hypothesis in this context is usually
a grasp preshape, 6D pose of the gripper and the gripper
joint configuration. Examples of such supervised methods
include [12, 18, 16, 17, 20], to name just a few. For a more
comprehensive overview, we refer to Bohg et al. [1]. These
approaches commonly use a learning method that returns
some confidence value for each query grasp hypothesis.
Given these scores, the grasp with the highest score is
typically selected for grasp execution, if it is reachable.

However, even though these methods select the best hy-
pothesis of all candidates at query time, the underlying
classification models have not been directly trained for this
objective. Instead they are optimized for accurately predict-
ing the binary labels of the entire training dataset. While
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for some subsets of data points separating postives from
negatives may be easy to achieve, it generally can be very
hard to achieve this separation for all data points. This is
particularly a problem when training on datasets with noisy
labels or where the employed feature representation is not
rich enough to carry all the necessary information for making
a decision.

Here, we argue that for grasping, we should be training
models on subsets of data, where one subset may for instance
represent all possible grasp hypotheses obtained from one
viewpoint of the object. Furthermore, we should optimize
an objective that rewards when the highest scoring training
data point of such a set is also positive. For example, when
considering a partial, segmented point cloud of an object,
there exists a large set of potential grasps, most of which are
not stable. The best scoring hypothesis within this set should
correspond to a stable grasp. Such an objective is called a
ranking loss. Thus far, only few grasp learning models in
the literature consider this kind of objective. At first glance,
this problem seems to default to standard classification for
binary labeled data.

In this paper, we introduce a ranking formulation for
grasp stability prediction for binary labeled data. There are
three main differences of our problem formulation to typical
ranking problems. First, our hypothesis set consists only
of binary data, hence there is no inherent ranking between
different examples other than the distinction between positive
and negative hypotheses. Second, we want to optimize solely
for the top-1 ranked hypothesis in a set of hypotheses, and
we are not interested in the remaining order of hypotheses.
Third, our resulting ranking score can also be interpreted as
a score for classification, deciding whether or not the top-1
ranked hypothesis is a positive or negative one.

We show that this formulation outperforms large-capacity
models such as Convolutional Neural Networks (CNNs)
and Random Decision Forests (RDFs) trained on the same
grasping dataset but optimized with a binary classification
objective.

In the remainder of this paper, we review related work
on ranking in general and for grasping in particular. This
is followed by a discussion of classification versus ranking
objectives. In Section IV the proposed ranking loss is de-
scribed in detail. Details on how the model is optimized using
Stochastic Gradient Descent (SGD) are given in Section V.
This is followed by experiments in Section VI.

II. RELATED WORK

Many different problems such as information retrieval,
optimizing the click through rates, even multi-class classifi-



cation problems can be formulated as ranking problems. The
most common approach to learning how to rank is based on
pair-wise classification. For instance, in order to rank docu-
ments, Herbrich et al. [6] proposed to use a hinge loss SVM
formulation to learn regression on ordinal data. Another pair-
wise formulation is based on a probabilistic loss, which can
be optimized using gradient descent, and has been applied to
information retrieval by Burges et al. [3], in connection with
a neural network based function approximator. A common
issue for pair-wise approaches is the biased data distribution,
often violating the i.i.d. assumption. Cao et al. [4] addressed
this issue with a list based loss, to learn to rank.

Ranking data is a fundamental problem and has been ap-
plied to various sub-problems in different domains. Lehmann
et al. [15] proposed to speed up object search by reducing the
number of expensive classifier evaluations by learning how
to rank sets of hypotheses. In robotics, ranking has been
used to learn to select footholds based on terrain templates
by Kalakrishnan et al. [11], enabling robust walking over
rough terrain. Data-driven approaches for grasp stability
prediction are commonly formulated as binary classification
problems, often due to the nature of the provided data labels.
There are however a few examples that employ ranking.
For example [7] iteratively improves a matching cost that
is computed based on a library of labeled local shape
templates. While the matching function does not change,
the library is continuously extended and thereby the ranking
of different grasp hypotheses changes over time. Finding
the best fingertip placement on objects for object grasping
has been identified as a ranking problem by Le et al. [14].
The authors manually label the training data with three
different classes (Bad, Good and Very Good) instead of
two. As a learning method, they employ a ranking SVM
that optimizes a measure that prefers better scores for the
top grasp candidates. Jiang et al. [9] presents an extension
to this work with a different representation of the grasp
but otherwise the same SVM-based ranking method. Our
proposed approach differs from this line of work by being
able to exploit binary labeled training data points to optimize
a ranking loss. We re-formulate the loss function such that
the best ranked grasp hypothesis is also positively labeled
and train a CNN with this loss.

III. GRASP STABILITY PREDICTION: CLASSIFICATION
VERSUS RANKING

To the best of our knowledge data-driven learning methods
for grasp planning are almost exclusively formulated as
classification problems of the form:

min
w
R(w) +

∑
(x,y)∈D

L(F (x;w), y) (1)

Here, the target of the function approximator F (x;w) is
to predict the binary grasp stability y ∈ {1,−1} for a
feature representation x (e.g. 2D templates shown in Fig. 4),
associated with a grasp preshape (6D pose and gripper
joint configuration). The target objective is to optimize the
parameters w, regularized by R (e.g. ||w||1 to have a sparse

set of parameters) to achieve the minimal loss L (e.g.
max(0, 1− yF (x;w)) hinge loss) on the training dataset
D, assuming that the test data distribution is similar to the
training data distribution.

We argue that for grasp planning, classification is a sub-
optimal objective. The canonical problem for grasp planning
is to predict a successful grasp for a target object given an en-
tire set of hypotheses. Such a hypothesis set can for example
contain all possible grasp rectangles for a view of an object as
provided by the Cornell dataset [16] or all possible templates
extracted from a 3D point-cloud as in [12]. Obtaining all
possible successful grasps is not necessary, since the goal is
that the robot succeeds in grasping the object with the first
grasp attempt. Therefore, the grasp stability prediction should
be reformulated as a ranking problem, trying to robustly
identify one successful grasp within each hypothesis set.
Additionally it should provide a calibrated score to decide
whether the best hypothesis is stable or not.

The canonical pair-wise ranking problem for different
hypothesis sets (x, y) and (x, y)′, formulated as a standard
classification problem, is illustrated in Fig. 1b and defined
as

min
w

R(w)+∑
(x,y)

∑
(x,y)′

L(F (x;w)− F (x′;w),∆(y, y′)). (2)

The main difference to the standard classification problem
(Eq. 1) is the pair-wise classification and the pair-wise loss
∆. Notice this optimization problem can be specialized to
the ranking SVM formulation proposed in [10] by applying
the appropriate max-margin loss L. As shown in Fig. 1b,
the ranking problem as described in Eq. 2 is concerned with
ordering examples from different hypothesis sets according
to the ∆ loss. For typical grasp datasets, consisting of
binary labeled grasp hypotheses, this ranking formulation
would result in a solution similar to the binary classification
problem (Eq. 1) up to a hypothesis set dependent scaling
and offset. The scaling and offset are necessary since the
ranking formulation is a relative problem. The remainder of
this paper is concerned with a ranking formulation for binary
hypothesis sets that allows top-1 prediction within the given
hypthesis set as well as classification of that top-1 choice.
We further propose a method to optimize such a problem
formulation within the standard stochastic gradient descent
optimization framework.

IV. TOP-1 RANKING

This paper addresses the problem of optimizing a function
that predicts one possible successful grasp within any given
hypothesis set, if the hypothesis set contains at least one
stable grasp. In addition to that, the resulting score has to be
discriminative to classify whether or not the best predicted
hypothesis is positive (y = 1) or negative (y = −1). In our
work, hypothesis sets only contain binary labeled grasps,
meaning a grasp is either considered positive (stable) or



(a) classification (b) ranking

Fig. 1: We illustrate the difference between the standard (a) max-margin classification
problem and (b) pair-wise max-margin ranking problem. All symbols of the same
shape are within the same hypothesis set. (a) Binary classification aims at separating
these two sets. The magnitude of the error is indicated by the color saturation of the
data samples where white means no error. Each set has its own color. The (b) ranking
problem attempts to not only separate the 3 sets, but also maintains an order such that
stars are always further to the top right than circles, and circles are further top right
than squares. The resulting pair-wise classification problems illustrate the similarity of
the ranking problem to the standard classification problem in (a).

negative (unstable). We assume no additional label informa-
tion for the data which would allow to further discriminate
between different examples in a set, e.g. if one positive grasp
is better than another positive grasp. A concrete example
for hypothesis sets is the grasp database introduced in [12].
In this particular example, every partially observed object
is associated with a point cloud and several labeled grasp
templates, where the grasp template takes the role of the
feature representation x and the binary labels y indicate a
stable or unstable grasp. Thus in this setting, a hypothesis
set contains all pairs (x, y) available for a particular object
view.

Every hypothesis set can either contain only positive
examples, or only negative examples or both. To simplify
notation we introduce three different index sets:

• I+ refers to all sets with only positive examples,
• I− refers to all sets with at least one negative example,
• I+− refers to all sets with at least one positive and

negative example.

Every hypothesis set is assigned to at least one index set.
Hypothesis sets with positive and negative examples are
assigned to both I+− and I−.

In the following we re-formulate and adapt the general
ranking problem (Eq. 2) to the top-1 grasp prediction prob-
lem. We use a max-margin formulation with a margin (t = 1)

l(t− yk), (3)

both for classification (k = F (x;w)) and ranking
(k = F (x;w)− F (x′;w)). Here, we use the squared
hinge loss l(v) = 1

2 max(0, v)2, since it is differentiable
everywhere, a property that has been proven useful
for stochastic gradient descent based neural network
optimization [21].

Our proposed loss fuction is comprised of three parts –
L+−(w), L+(w) and L−(w) operating on the previously
introduced index sets I+−, I+ and I−, respectively. The
goal of the first part of our loss, L+−(w), is to rank positive
and negative hypotheses using a max-margin formulation,

and is given as:

L+−(w) =
∑

i∈I+−

∑
x+
i

[
l(1− F (x+

i ;w))+

∑
x−i

l(1− (F (x+
i ;w)− F (x−i ;w))

]
where x−i represents all negative and x+

i all positive hypothe-
ses in the corresponding hypothesis sets in I+−. Notice,
we obtain l(1− (F (x+

i ;w)− F (x−i ;w)) from Eq. 2, using
Eq. 3 with t = ∆(y, y′) = 1 if y is a positive and y′ a
negative hypothesis. Furthermore, we ensure that positive
examples get a calibrated score by adding the max-margin
formulation l(1− F (x+

i ;w)) for positive examples.
In the case of separable data we can rewrite L+− to

L+− =
∑

i∈I+−

∑
x+
i

[
l(1− (F (x+

i ;w)−max
x−i

F (x−i ;w))+

l(1− F (x+
i ;w))

]
(4)

If the data is separable, summing over all negative examples
(as done in initial L+−(w)) will result in the same loss value,
as this max formulation. The second part of our loss, L+(w),
operating on index set I+(w), ensures that the prediction
scores are calibrated in the same manner as positive examples
in I+−, again by using the max-margin formulation:

L+(w) =
∑
i∈I+

∑
x+
i

l(1− F (x+
i ;w))

The third component L−(w), establishes that negative ex-
amples in the index set I− are separated from positive ones
to ensure the overall calibration of the score such that the
final ranking score for a hypothesis set can be used for
classification:

L−(w) =
∑
i∈I−

∑
x−i

l(1 + F (x−i ;w))

Finally, we obtain the joint ranking and classification loss
formulation

min
w

[
L+−(w) + L+(w) + L−(w)

]
(5)

If our binary labeled training data, organized in hypothesis
sets, is perfectly separable, this formulation will result in
the same solution as the standard max-margin classification
problem (Eq. 1). The pair-wise terms in Eq. 4 will vanish
as soon as the two classes are perfectly separated. If the
dataset is not separable, the pair-wise term will function as
an additional loss on all positive examples within hypothesis
sets for which the ranking loss cannot be fulfilled. This can
be interpreted as a difference in importance of positive and
negative misclassifications. However, this does not resolve
the issue that the top-1 prediction might be a negative
example, an illustration of that case is shown in Fig. 1a.
The reason for misclassification might be the similarity to
a positive example within a different hypothesis set. Hence,
the perfect order/separation is still not achievable.



More concretely, let us assume that there exists a negative
grasp which has an indistinguishable feature representation
from several positive grasps in multiple sets. In this case
multiple failure cases can occur. If this particular (negative)
hypothesis is in the same hypothesis set as the indistin-
guishable positive hypotheses, the negative hypothesis can
be picked at random. The reason for this is that the negative
hypothesis achieves exactly the same score as the positive
hypotheses and one hypothesis has to be selected based on
this score. Another possibility is that this negative hypothesis
is in a different hypothesis set than the indistinguishable
positive hypotheses and no easy positive example exists
for the function approximator F (x;w) in the hypothesis
set containing the negative hypothesis. Thus, this negative
hypothesis will achieve the highest score.

In the following we present our approach to obtain a
top-1 ranking problem despite the binary nature of the
hypothesis sets. Since there are no label differences within
the set of positive or negative hypotheses, we propose to
use the induced difference by the function approximator
itself. Thus, while optimizing the function approximator,
the currently best positive and negative example, given the
current function approximator prediction, is used for the pair-
wise loss, resulting in:

min
w

∑
i∈I+−

[
l(1− (max

x+
i

F (x+
i ;w)−max

x−i

F (x−i ;w))+

l(1−max
x+
i

F (x+
i ;w))

]
+∑

i∈I+
l(1−max

x+
i

F (x+
i ;w))+∑

i∈I−

∑
x−i

l(1 + (F (x−i ;w)) (6)

Fig. 2 shows an example why this simple change to the
optimization objective does achieve the top-1 ranking prop-
erty for binary datasets. Intuitively, our formulation does not
penalize any prediction for positive examples except for the
current best positive and negative one in each hypothesis set.
The best examples are determined by the current ranking of
the latest function approximator parameterization. This rank-
ing is not optimized by an explicit supervised quantity but
it rather reflects the difficulty for the function approximator
to distinguish positive from negative hypotheses. Hence, the
function approximator has the ability to select one positive
example in each hypothesis set, which contains at least one
positive example, which is easy to separate from all negative
examples. This change enables our formulation to ignore
negative examples which are indistinguishable from positive
hypotheses, as long as there exists at least one other positive
hypothesis which is distinguishable. Notice, that we do not
select these positive examples, but the optimization itself will
determine these examples. Different learning methods for
F (x;w) therefore might result in different top-1 candidates.

This problem formulation enables automatic selection of
positive top-1 examples which are easy to separate from
negative examples. Indistinguishable examples under the

implicit function approximator similarity measure, existing
e.g. in different hypothesis sets, are not enforced to obtain a
positive score any more.

To be more concrete, this behavior is useful for positive
hypotheses for which important information, e.g. the surface
points of an object, is not available, due to e.g. partial
occlusion. In this scenario, the feature representation for
the hypothesis might not contain enough information to
distinguish this example from other negative examples. Using
our ranking formulation (Eq. 6), the function approximator
is not penalized if it assigns a low score to such examples,
as long as there is another positive hypothesis in the set, for
which the feature representation contains enough information
to separate this example from all negative ones.

The pair-wise loss, solely applied to the two currently
maximum examples of different class can be interpreted as a
virtual target for the positive example. Alternatively, the pair-
wise loss can be seen as a ranking problem on exactly two
hypotheses (highest scoring positive and negative), selected
by the score of the function approximator. The optimization
tries to increase the score of that particular positive example
to outperform the best negative one by a fixed margin (Eq. 3
and 6).

For each hypothesis set we have to solve at most two
different problems. For hypothesis sets in I+− the pair-wise
loss and negative calibration are optimized. For hypothesis
sets in I+, the best positive example is calibrated and for
hypothesis sets in I− all negative examples are calibrated.
Despite the simple nature of these problems, obtaining an
efficient optimization of Eq. 6 is not straight forward as
discussed in the following section.

Fig. 2: This figure illustrates the proposed ranking objective applied to a single binary
set of hypotheses. Squares represent negative examples and circles positive ones. The
saturation of the color filling the shapes represents the error magnitude for each sample.
The three dashed lines through zero represent the standard hinge loss. Notice that
positive examples (circles) are not enforced to be separated but negative (squares) are.
Since the current best hypothesis is a negative example, an additional classification
problem for the best positive hypothesis is created, creating a virtual target higher
than the current best negative example plus a margin. Arrows indicate the direction in
which the optimization objective attempts to change the prediction scores.

V. EFFICIENT FIRST ORDER OPTIMIZATION

The naive problem formulation as proposed in Eq. 6
could be optimized with first order batch gradient descent.
However, this would not allow us to use large-scale databases
such as [12]. The standard approach to optimizing a loss
of the type (Eq. 1 and Eq. 6) for large datasets is to
use mini-batch stochastic gradient descent. This makes each
optimization step independent of the total number of avail-
able datapoints. Current state-of-the-art approaches such as



CNNs, which can exploit large datasets due to the large
number of open parameters, also follow this optimization
scheme. Usually n datapoints (x, y) are sampled uniform
at random from the training dataset, constructing one mini-
batch.

For our proposed loss, every mini-batch has to contain
all positive examples of a hypothesis set due to the max
operation. Notice this is only restricted to the positive ex-
amples. Using any subset of the negative examples which
is already fulfilled would simply result in zero loss for
the pair-wise terms. Thus the naı̈ve approach for our loss
would be to sample a hypothesis set uniform at random. All
positive hypotheses of this set have to be in the mini-batch
together with any subset of negative hypothesis. This process
is continued until the mini-batch is filled with samples.

This naı̈ve approach to construct the mini-batches for
stochastic gradient descent has two main drawbacks. First,
the number of positive examples would put a lower bound on
the mini-batch size. Second, the majority of the computation
would result in no improvement, since only the largest
positive and negative example will be affected.

In the following we present our approach to overcome the
limitations of the naı̈ve approach.

A. Pair-Wise Loss Relaxation

As pointed out before, the max operation in the pair-
wise term of our ranking loss Eq. 6, is the limiting factor
to draw individual samples from each hypothesis set. Thus,
next we show how to address this issue such that we can use
stochastic gradient descent effectively.

Typical state-of-the-art methods for classification and re-
gression such as (Convolutional) Neural Networks are global
function approximators. Hence, every update of F (x;w) can
affect the prediction of any other data sample. We assume
that F (x;w) changes slowly for not affected values and
more so for values for which gradients are applied. This
is not a very restrictive assumption since we use stochas-
tic gradient descent which requires to take small steps to
converge. Using this assumption we can exploit that the
maxxi

F (xi;w) within a hypothesis set is unlikely to change
very frequently. Thus, we propose rewrite the pair-wise term
as two max-margin classification problems with a hypothesis
set dependent margin ti:

min
w

∑
i∈I+−

[
l(t+i −max

x+
i

F (x+
i ;w))+

l(t−i + max
x−i

F (x−i ;w))+

l(1−max
x+
i

F (x+
i ;w))

]
+∑

i∈I+
l(1−max

x+
i

F (x+
i ;w))+∑

i∈I−

∑
x−i

l(1 + F (x−i ;w)) (7)

where t+i = 1 + maxx−i
F (x−i ;w) is computed for each hy-

pothesis set, as well as t−i = 1−maxx+
i
F (x+

i ;w). The

basic idea is to fix the maximum positive hypothesis for
one hypothesis set to compute the corresponding margin for
the negative hypothesis and vice versa. Instead of always
evaluating the function approximator to obtain the true ti, the
last known prediction for every sample is used to update the
estimates. This optimization problem will result in the same
minimum as Eq. 6, if our assumption, that the maximum
hypothesis for a particular hypothesis set does not change
frequently, holds. Now, it is possible to draw individual
samples from each hypothesis set.

Note however, the most informative examples are the best
positive and negative examples. Other positive examples of
a hypothesis set in I+− do not contribute to the loss Eq. 7.
Thus, to improve the loss the sample distribution over the
hypothesis and hypothesis sets is not uniform but dependent
on the loss and an additional term described in the following
section.

B. Loss Optimization using Sampling

Random data sample selection is crucial for stochastic
gradient descent based optimization. Yet, selecting data
which most likely results in zero loss, thus zero gradients,
simply slows down the optimization convergence. Using the
previously introduced ranking loss Eq. 7, the problem with
drawing sample hypotheses is to trade of the impact on the
loss and the accuracy of the ti estimation. The latter will
ensure that the actual maximum of each hypothesis set is
used to compute the loss and not an out of date estimate.
Thus, we propose a heuristic to update the distribution for
hypothesis sampling, which trades of the following two
quantities (i) the error given the current loss (Eq. 7) and (ii)
the iterations since the last update of the function evaluation
of each data sample.

More concretely, after every function approximator eval-
uation we will update the prediction for the correspond-
ing hypothesis and the iteration when the prediction was
performed. For all hypothesis sets for which a hypothesis
prediction was updated the estimates for the corresponding
t+i and t−i are updated and the loss based error for the
hypothesis is updated. Notice, almost all hypothesis in a set
have zero loss, since only negative and the maximum positive
hypothesis are strictly enforced. If we normalize the error per
hypothesis with the total error for all hypothesis, we obtain
a distribution. Sampling hypotheses from this distribution
will solely focus on improving the loss under the current
t+i and t−i estimates. Yet, due to the assumed global nature
of the function approximator, we have to ensure that these
estimates are still true. Therefore, we augment this error with
an artificial error term that captures the number of iterations
since the last update of a data point. It is of the following
form:

e(c, u; o, b) = exp(−t + (c− u)/b) (8)

where c is the current iteration, u is the last update iteration
of the example, o a trade-off parameter to determine the base
influence of not evaluating, and b determines how fast the
influence grows.
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Fig. 3: This figure illustrates the general optimization loop, sampling a mini-batch, performing one function approximator update step, feeding back the latest prediction values
and updating the error distribution. We show two exemplary sets of hypotheses, the one on the left contains positive and negative examples and the one on the right only negative
ones. The gray value of the computed error distribution signals the importance for of this sample for the mini-batch sampling. Notice how the error due to the loss, indicated
in red and green and the time since the last update affects the error distribution. The error distribution is normalized across all hypothesis sets and samples are drawn without
replacement from the joint distribution.

Finally, after each optimization iteration the hypothesis
predictions and loss errors are updated as previously de-
scribed. In addition to that, we add the artificial iteration
dependent error term Eq. 8 to the hypothesis error. The
overall error for all hypothesis is normalized to get the
discrete distribution from which we draw n samples (without
replacement) to fill the new mini-batch. This means, hy-
potheses which have low influence on the loss are sampled
very infrequently, basically not until Eq. 8 increases to
a similar error magnitude as the maximum loss violating
hypotheses. The maximum positive and negative hypothesis
per hypothesis set are sampled more frequently if they do
not fulfill the ranking loss. Fig. 3 illustrates the optimization
loop for our proposed loss and mini-batch sampling.

VI. EXPERIMENTS

A. Dataset

For evaluation we use a large scale dataset [12] which
has been generated in OpenRave [5] by simulating numerous
grasps on each of more than 700 distinct object mesh models.
This dataset is split into 4 different subsets: a toy dataset
containing only bottles, and three diverse sets of small,
medium, and large objects. For our experiments we use the
physics-metric proposed in [12] to automatically evaluate and
label all the grasps. We binarize the dataset based on this
metric ((y = 1 : p > 0.9), (y = −1 : p <= 0.9)) with the
same threshold as used for the evaluation within [12].

In addition to the grasps, the dataset also contains simu-
lated point clouds that are reconstructed from multiple view-
ing angles distributed on a sphere around the object centroid.
From each point cloud, a set of local shape templates is
extracted that essentially encode object shape as seen from
the hand (Fig. 4). Apart from object surface information,
it also contains information about free and occluded space.
Thus a template can be interpreted as an image with 3 color
channels. The first channel represents the surface points of
the object projected onto the plane spanned by the surface
normal. The second channel represents the occluded space

which is computed based on the viewpoint and the surface
points. Points are again projected onto the same surface
plane. Cells in the grid on the surface plane which are neither
filled by surface points nor by occlusion points are marked
as free space. Each template is linked to exactly two grasp
poses that only differ in the initial distance between the palm
of the hand and the object surface (the stand-off). The surface
normal of a template is equal to the approach vector of the
hand. One grasp can however be linked to multiple templates
as its associated object surface normal may be visible from
multiple viewpoints. An example template representation is
shown in Fig. 4. This figure also visualizes different 3D
versions of grasp templates for one grasp.

When the angle between the viewpoint and the surface
normal is too big, the majority of the local shape information
cannot be captured by the template representation, thus
it is difficult for a learning method to discriminate these
examples. The feature representation simply does not con-
tain enough information to separate positive from negative
examples under such conditions.
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Fig. 4: Variation of the local shape representation given different viewpoints. The grasp
for each of these templates is the same, i.e. approach direction along the cyan line and
fixed wrist roll. The viewpoint is indicated by the pink line. Each column shows the
same template from two different directions. (Top) Template viewed from the approach
direction. (Bottom) Template viewed from the side. The occlusion area is the most
affected by the varying viewpoint. Figure adopted from our previous work [12].

All templates extracted from one point cloud that are
within a maximum angle between the surface normal of the
object and the viewing point of the sensor frame, are grouped
into one hypothesis set. Similar to [12], we reject templates
with less than 30 surface points in the template.



B. Baselines

We compare the proposed method to two baseline models
that are optimized for classification accuracy. The first one
was already proposed in [12]. It is a simple CNN that
consists of one convolution layer, a subsequent pooling layer
and 3 fully connected ones, using a rectified linear unit as
nonlinearity. The last nonlinearity is a sigmoid function to
map to the binary grasp label. As input, it uses the same
local shape template representation as described above.

As a second baseline, we use a Random Decision For-
est that is trained to perform binary classification on this
dataset [2]. As input to the model, it uses a set of randomly
sampled probes for each information channel of the shape
template and stacks it together into one feature vector. Both
baseline models are very similar in classification perfor-
mance.

C. Evaluation

A common use case in robotics is to select the best grasp
for a given point cloud. Due to the nature of the dataset, the
point cloud is already segmented to contain only points from
the target object. In future work, we want to analyze how
precise the target object point cloud segmentation has to be.

In Table 5 we evaluate the accuracy of the top-1 pre-
dictions. In this case, a true positive is a prediction for a
hypothesis set from an object point cloud for which the high-
est scored hypothesis is classified positive and the ground
truth label is positive. A true negative in this experiment
is a prediction for a hypothesis set for which the highest
ranked hypothesis is classified negative and there is no
positive labeled hypothesis in this set. The scalar threshold
for the classification prediction, based on the ranking score,
is obtained by cross validation. We compare the perfor-
mance of the proposed method with the two classification
baselines. The results show that the proposed model trained
on a ranking objective outperforms the two baselines by a
large margin. For the dataset containing large objects, the
performance is more than doubled. For the toy dataset of
bottles the improvement is moderate. This is probably due
to the simplicity of this subset of data where positive samples
can be easily separated from negative ones. Notice that the
datasets are highly unbalanced, meaning that the majority of
the grasp hypotheses across all hypothesis sets are negative.

The results on the other datasets suggest that it is much
harder to perfectly separate positive from negative data while
it is easy to ensure that the top-ranking one refers to a stable
grasp. This can be due to remaining label noise in the dataset
where similarly looking templates can be either positive or
negative.

In Fig. 6 we illustrate how our proposed sampling proce-
dure (Section V-B) affects the sample usage for optimization,
focusing on the difficult examples the most. This supports
our hypothesis that during the course of the optimization of
our proposed loss, the majority of the hypotheses are easy to
address, resulting in low errors. However, every example is
revisited due to the suggested heuristic to ensure that, despite

Bottles Small Medium Large
data ratio 0.13 0.15 0.08 0.03
Forest 0.83 0.43 0.45 0.31
CNN 0.83 0.39 0.51 0.41
OURS 0.85 0.59 0.70 0.84

Fig. 5: We report the data ratio (all positive grasps divided by all grasps) for each test
dataset and the top-1 score on the test dataset obtained by three different methods.
The top-1 accuracy indicates the ratio of point clouds in the test data set for which
the best scoring template was classified positive and also had a positive ground truth
label or the best scoring template was classified negative and there was no positive
ground truth example in the set. Results are reported per object group (bottles, small,
medium, and large) and for gripper stand-off 0 from the object surface before closing
the fingers. The proposed model that is trained on a ranking objective outperforms the
baselines by a large margin. For large objects, the performance has more than doubled.

changes to the parameters of the learning method, the error
on these examples is still low.
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Fig. 6: This figure shows the influence of the error distribution based sampling for
the optimization. The minimal update count (blue) illustrates that due to the error
component based on the iterations, all data samples are revisited over time. However,
the maximum update count (red) shows that the optimization is mostly focusing on
the difficult hypotheses.

VII. DISCUSSION AND CONCLUSION

In this paper we have proposed to treat grasp prediction
on sets of hypotheses as a ranking problem. An important
distinction to other ranking approaches is that our method
works for binary classification datasets, as long as the dataset
is organized in sets of hypotheses, which is the typical case
for grasp prediction. The experimental results support our
hypothesis that the proposed ranking problem formulation
significantly improves top-1 grasp stability prediction since
difficult and ambiguous examples can simply be ignored
by the function approximator. Another advantage of this
formulation is that ambiguous and difficult examples are
determined automatically by the optimization process. This
is achieved by using the ranking of the function approximator
at the particular moment of optimization. We believe that top-
1 prediction is a better objective for grasp prediction, since
perfect classification of all possible grasp hypotheses for a
particular scene is unrealistic due to uncertainty in sensing
and partial information in general. Even if the grasp predictor
is trained with an optimization objective, one stable grasp has
to be selected. In this case, most often the distance to the
decision border of the classifier is used as a proxy to achieve
a ranking within the positive predicted grasps. In this work
we have shown that this proxy results in worse performance



compared to a grasp predictor which was optimized for
ranking.

Conceptually the biggest drawback of the proposed ap-
proach is that we are solely optimizing for the top-1 grasp
hypothesis. In the case that this hypothesis is not feasible due
to e.g. kinematic or environmental constraints, the robot has
to alter its position to either get a different view or make
this grasp reachable, since no alternative prediction has a
meaning for this set. Therefore, we believe an interesting
extension of this approach is to optimize for top-n ranking
as long as no other top-1 hypothesis performance is affected.

Another interesting extension to this work is to replace the
heuristic for the hypotheses sampling, for mini-batch con-
struction, by a stochastic non-stationary multi-armed bandit
formulation. Such a formulation could further improve the
optimization convergence.
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