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Abstract— An event-based communication framework for
remote operation of a robot via a bandwidth-limited network
is proposed. The robot sends state and environment estimation
data to the operator, and the operator transmits updated control
commands or policies to the robot. Event-based communication
protocols are designed to ensure that data is transmitted only
when required: the robot sends new estimation data only if
this yields a significant information gain at the operator, and
the operator transmits an updated control policy only if this
comes with a significant improvement in control performance.
The developed framework is modular and can be used with any
standard estimation and control algorithms. Simulation results
of a robotic arm highlight its potential for an efficient use
of limited communication resources, for example, in disaster-
response scenarios such as the DARPA Robotics Challenge.

I. I NTRODUCTION

Autonomous robots remotely operated by a human from
a remote location are essential assets in current and future
disaster-response scenarios; see, for example, the ongoing
decommissioning of the Fukushima nuclear power plant [1].
Harsh conditions that are persisting in such scenarios often
lead to degraded communication with limited bandwidth
between the robot and the operator. For an efficient operation,
communication must be managed such that only necessary
data is transmitted in order to avoid the congestion of the
communication network with irrelevant data. Because of the
importance of resource-constraint communication in real-
world applications, the ongoing DARPA Robotics Challenge
(DRC) [2] requires the participating teams to control their
robots under limited communication [3].

In this paper, we consider the remote operation scenario
shown in Fig. 1. For monitoring purposes, the robot sends
state estimation data, which it accumulates from its local
sensors, to the operator. The operator influences the robot’s
action by sending new input trajectories or control policies.
Typically, communication between the components occurs
periodically at fixed rates. While periodic communication
allows for comparably straightforward analysis and design
of the remote control system, it comes with a fundamental
limitation: communication instants are predetermined and
not chosen in relation to the system’s current operating
conditions, or the information content of the data. Therefore,
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Fig. 1. An operator supervises the mission of a robot from a remote site
by monitoring real-time state and sensor data received from the robot, and
by sending updated control policies to the robot. Communication between
the operator and the robot is via a resource-constraint network, hence data
exchange shall be limited to instants when new data is necessary.

this can lead to congestion of the network with irrelevant
data and an inefficient use of the available communication
resources. Herein, we develop a framework by which the
communication from operator to robot, and vice versa,
is managed automatically by event-triggering mechanisms
ensuring that data exchange happensonly when necessary.

Recently, event-based communication has received a lot
of attention in the controls community as an alternative to
periodic (i.e. time-based) communication (see recent surveys
[4]–[6]). The underlying idea of event-based methods for
estimation and control is to trigger the communication of
data between the components of a control system if, and
only if, an update is required to meet a certain specification
(e.g. stability, estimation or control performance).

We apply event-based estimation and control to the remote
robot operation problem in Fig. 1. For the robot-to-operator
communication, we follow ideas from event-based state
estimation [7], [8]. According to these, the receiver (here,
the operator) relies on model-based state predictions at times
when the sender (the robot) does not transmit new data.
The sender implements a copy of this state predictor, and
compares the predictor’s information to its own estimator
information (which exploits all sensor data). An updated state
estimate is sent to the operator only if the prediction is not
“good enough” already. The triggering decision is made by
comparing the difference of the two state probability density
functions (PDFs) as suggested in [9].

For the operator-to-robot link, we implement an event-
based control scheme. While most work on event-based
control considers the transmission of input commands (see
e.g. [5]), we consider a more general framework, where
we can also communicate control policies. The triggering
decisions are based on the difference of the policy that is
currently executed by the robot and the updated policy by
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the operator. This difference is measured in terms of an
associated control cost.

The problem of limited communication specifically for the
DRC scenario is also addressed in [10]. Therein, the authors
consider a manipulation task and develop a framework, in
which the human operator can directly control various com-
munication rates via a user interface. In striving for greater
autonomy of the human-robot operation, we seek to automate
communication decisions using event-based methods herein.
The operator specifies a desired accuracy level for control
and estimation, and algorithms at the operator and the robot
site automatically determine when to transmit data.

A related problem to the one herein is that of teleoperation
(see [11]–[13], for example). The topic encompasses a vast
body of literature, which can only be touched upon here. In
teleoperation, a machine is operated by a human through
a remote communication link with special emphasis on
the objectives of stability and telepresence [12]. Therefore,
compensating for communication delays is a main focus
in control for teleoperation. In the application considered
herein, the robot is assumed to posses a certain level of
autonomy; in particular, it can still operate safely even at
low operator communication rates. The focus of this work
is on reducing communication, rather than compensating
for delays. Nonetheless, the two problems are related. For
example, using an architecture where a partial copy of
the robot information is maintained at the operator (state
prediction), and a partial copy of the operator informationis
kept at the robot (control policy) is a common principle also
in teleoperation [11]. Event-based approaches have also been
suggested in the context of teleoperation. For example, in
[13], deadband control is used, where new data is sent if the
difference of the current and the last communicated value ex-
ceeds a threshold. Here, we use more sophisticated triggers:
for estimation, triggers based on the state PDFs measuring
their information content; and for control, triggers comparing
control policies in terms of their expected performance.

In summary, this paper makes the following contributions:

• Development of a framework for remote operation of
autonomous robots with limited communication by ap-
plying ideas from event-based estimation and control.
The framework is modular in that any standard estima-
tion and control method can be used.

• Generalization of typical event-triggering mechanisms:
for estimation, transmit decisions are based on the
conditional state PDFs, and for control, they are based
on costs associated with control policies.

• Performance guarantees are given in terms of upper
bounds on the control and estimation degradation due to
the reduction in communication (Facts 1 and 2). These
bounds are induced by the event-based architecture and
thus independent of the choice of estimation and control
algorithms, and they can be adjusted by the user.

• Demonstration of the method’s effectiveness in reducing
communication between operator and robot through
simulations of a robotic arm reaching task.

Outline of the paper: After introducing the individual
system components (robot, estimation algorithm, control
algorithm) in Sec. II, the main framework for event-based
communication in remote robot operation is developed in
Sec. III. Section IV presents simulation results of a reaching
task highlighting the achievable communication reduction.
The paper concludes with remarks in Sec. V.

Notation: We usek as the general time index. For a
discrete-time signals, we usesk to denotes evaluated at
index k, and we writesk1:k2

with k1 ≤ k2 to refer to
the sequence{sk1

, sk1+1, . . . , sk2
}. E[·|·] denotes the con-

ditional mean, Var[·|·] the conditional variance, andp(·|·) a
conditional PDF.N (ξ;µ, V ) denotes the PDF with argument
ξ of a (multivariable) normal distribution with meanµ and
varianceV .

II. PRELIMINARIES

In this section, we introduce the robot model, the state
estimator and the controller to set the stage for the discussion
of the event-based architecture in Sec. III. No specific choice
of estimation and control algorithms is made to emphasize
the modularity of the approach, which is independent of the
concrete algorithms. In the simulations in Sec. IV, a specific
example is presented.

A. System description

The robot dynamics are described by a general nonlinear,
discrete-time model

xk+1 = fk(xk, uk, vk) (1)

with time indexk ≥ 0, statexk ∈ R
nx , control inputuk ∈

R
nu , and process noisevk. Measurementsyk by the robot’s

sensors are described by

yk = hk(xk, wk) (2)

wherewk is sensor noise. The PDFs of the noise variables
are assumed to be known.

Depending on the application, the dynamics (1) can cap-
ture the robot’s internal states (e.g. positions, velocities,
forces), as well as relevant environment states (e.g. contacts,
obstacles). The robot dynamics may include local controllers
guaranteeing a certain level of autonomy. In particular, the
dynamics (1) are typically stable in our framework, such that
safe operation can be guaranteed without requiring input at
a high rate from the operator. However, stability of (1) is not
strictly necessary for the derivations herein.

We consider an architecture as in Fig. 1, where the robot
has an embedded computer, which runs local control and
estimation algorithms, and which is connected via a network
link to a remote operator (bi-directional communication).
For the purpose of this work, we assume that network
communication is without data loss. This may be ensured
by low-level protocols using acknowledgments. We further
abstract communication to be instantaneous without delays.1

1We remark that delays are not as critical in the scenario considered herein
as in, for example, teleoperation [11]–[13], since we assume the robot to
have a certain level of autonomy and not require operator inputs at high
rates for safe operation.



B. State estimation

Let p(xk+ℓ|y0:k, u0:k) with ℓ ≥ 0 denote the conditional
PDF of the statexk+ℓ given all measurements and inputs up
to and including timek. For simplicity, we also writepk+ℓ|k

to denotep(xk+ℓ|y0:k, u0:k).
We assume that there is some state estimation algorithmE ,

which computes the conditional PDFp, or an approximation
p̂, from datay0:k, u0:k and the model (1), (2):

E : Input: datay0:k, u0:k, prediction horizonℓ (3)
Output: (approximate) PDF

p̂k+ℓ|k = p̂(xk+ℓ|y0:k, u0:k)

Furthermore, we assume that there is a method defined to
extract an estimatêxk+ℓ from the PDFp̂k+ℓ|k (to be used
for state-feedback control, for example). Typical choicesare
the mean, or maximum likelihood estimate.

Notice that the algorithm (3) can be used for state esti-
mation (i.e. to computêpk|k) and state prediction (̂pk+ℓ|k,
ℓ ≥ 1). Standard examples forE include the following, [14]:

• Kalman filter (KF): for a linear time-invariant sys-
tem (1), (2) with Gaussian noise, the conditional
state PDF is Gaussian; that is,p(xk+ℓ|y0:k, u0:k) =
N (xk+ℓ; x̂k+ℓ|k, Pk+ℓ|k). The KF recursively com-
putes conditional mean and variance,̂xk+ℓ|k =
E [xk+ℓ|y0:k, u0:k] and Pk+ℓ|k = Var [xk+ℓ|y0:k, u0:k].
In this case,E is exact, i.e.p̂k+ℓ|k = pk+ℓ|k.

• Extended Kalman filter (EKF): recursively computes
approximations x̂k+ℓ|k ≈ E [xk+ℓ|y0:k, u0:k] and
Pk+ℓ|k ≈ Var [xk+ℓ|y0:k, u0:k] by linearizing (1), (2)
about the current estimate. The corresponding Gaussian
PDF approximates the true PDF:p̂(xk+ℓ|y0:k, u0:k) =
N (xk+ℓ; x̂k+ℓ|k, Pk+ℓ|k) ≈ p(xk+ℓ|y0:k, u0:k).

C. Control

We consider a suitable control design methodC that
generates a control policy over a time horizonM , given the
current robot statexk at timek = k (or a state estimate) and
control objectives (e.g. reference, goal state):

C : Input: time k, statexk, control objectives (4)
Output: policy πk

whereπk is a time-varying control policy mapping the next
M states to inputs:

uk = πk(k, xk), k = k, . . . , k+M. (5)

We emphasize that the index ‘k’ in πk stands for the time
when the control policy was computed, while the arguments
k andxk are the current time and state, at which the policy
is evaluated to compute inputuk.

Notice thatC may either be a computer algorithm, or it
may represent the direct input of a human operator. For
example, (5) can represent an open-loop input trajectory,
which is determined by a human operator placing suitable
waypoints for the robot on an interactive map of the envi-
ronment, given the current PDF of the robot state.

A reasonable and common choice for automatic control
design are optimal control methods (see e.g. [15]). With
these, a policyπk is found by minimizing a cost function.
Let Jπ(k, xk) be the cost of applying policyπ when starting
at statexk at timek, andΠ be the set of admissible policies.
Then

πk = argmin
π∈Π

Jπ(k, xk) (6)

is the corresponding optimal control policy.
We give some examples forC:

• Open-loop input trajectory:

πk(k, xk) = rk (7)

with rk:k+M a constant sequence.
• Linear quadratic regulator (LQR) [16]: For linear (1),

yk = xk, and an infinite-horizon cost (M → ∞)

Jπ(k, xk) = lim
M→∞

1

M
E





k+M
∑

k=k

xT
kQxk+(π(xk))

TRπ(xk)





with Q andR positive definite weights, the solution to
(6) is

πk(k, xk) = Fxk (8)

whereF is a constant feedback gain, which is indepen-
dent of xk and k, and can readily be computed from
the linear model and weightsQ andR (see [16]).

• Iterative linear quadratic Gaussian (iLQG) [17]: For
nonlinear (1),yk = xk, and finite-horizon cost

Jπ(k, xk) = E



gk+M (xk+M )+

k+M
∑

k=k

gk(xk, uk)



 (9)

wheregk andgk+M denote stage and terminal cost, an
approximatesolution to (6) is given by

πk(k, xk) = Fkxk + rk (10)

where the sequences forrk and Fk are obtained by
iteratively solving linear-quadratic approximations of
the nonlinear control problem (see [17] for details). The
solution depends on the starting statexk.

Notice that the above are examples, and many other
approaches for control design are conceivable (such as other
iterative, approximate optimal control methods [18]–[20]).
The architecture proposed herein is not specific to the choice
of control design methodC, and neither to the choice of
estimation algorithmE .

D. Problem formulation

Figure 2 depicts a straightforward implementation of a
supervisory control architecture for an autonomous robot.
The robot implements a state estimatorE and controller
πk onboard; that is, under normal conditions, the robot
can operate autonomously. For monitoring purposes, the
robot communicates its state estimate to the operator at a
predetermined, fixed update rate (such as every stepk). Due
to possibly large computational requirements and to allow for
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Fig. 2. Standard implementation of a supervisory architecture for con-
trolling a robot. By running state estimatorE and control policyπk on
its embedded computer, the robot has a certain level of autonomy. The
operator may send an updated policy over the network link, forexample,
when the robot task changes. The robot continuously communicates the
state PDFp̂k|k (or state estimatêxk|k) to the operator for the purpose
of monitoring. Communication between robot and operator is typically
periodic, or determined by the operator. In Sec. III, we propose a modified
architecture that automatically controlswhendata needs to be send over the
network and thus saves communication resources.

human interventions, new control policiesC are computed at
the remote operator site. If reference inputs are sent to the
robot as in (7), this typically occurs also at a fixed rate. If
the operator sends updated policy parameters as in (10), this
may happen at a lower rate or on occasion.

The object of this paper is to develop a framework for
automating the communication between robot and operator,
and this way ensuring an efficient use of the communication
resource. Each unit shall transmit data to the other side,
only when the other side is in need of new data: the robot
communicates new estimation data only if this significantly
increases the operator’s information, and the operator sends
a new policy only if this yields significantly better control
performance.

III. E VENT-BASED COMMUNICATION

Event-based communication schemes are introduced in
this section to address the objective of automatic and efficient
communication between robot and operator. The proposed
architecture is depicted in Fig. 3 and explained in the
following subsections.

A. Robot-to-operator link: Event-based state estimation

The robot computes the current state PDFp̂k|k at everyk
from the lastest sensor measurements using an estimation
algorithm (3) (denoted by the blockState Estimationin
Fig. 3(b)). Given the sensor equipment and estimation algo-
rithm E , p̂k|k is the optimal estimate. The question addressed
in this subsection is, when̂pk|k is to be communicated to the
operator2, and how the operator compensates for not always
receiving the latest estimate.

The approach for managing the robot-to-operator commu-
nication follows the key ideas of event-based state estimation

2If instead of the full PDFp̂k|k, a lower-dimensional quantity related to
the PDF (such as the state estimatex̂k|k) is communicated, the following
applies with slight modifications.
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Fig. 3. Proposed architecture for remote operation of a robot, using
event-based communication for both the robot-to-operator link (explained
in Sec. III-A) and the operator-to-robot link (Sec. III-B).Event-based
communication is indicated by dashed arrows, while continuous flow of
data (periodic communication) is shown by solid arrows.

developed in [7], [8] for reducing communication in net-
worked systems with multiple distributed sensor-estimator-
agents. The receiving side (here, the operator) implements
the same estimation algorithmE as the sending side (the
robot) in order to compute a prediction of the state PDF
(block State Predictionin Fig. 3(a)). That is, the operator
compensates for not knowinĝpk|k by computing predictions
p̂k|kest, wherekest< k is the last time an update was received.
The robot implements a copy of the operator’s state predictor
(State Predictionin Fig. 3(b)), and sends an updatep̂k|k only
if the prediction is not “good enough.”

Let γest
k

∈ {0, 1} denote the event that the robot commu-
nicates p̂k|k at time k (γest

k
= 1), or not (γest

k
= 0). The

operator’s knowledge of the state can then be formalized as

p̌k =

{

p̂k|k if γest
k

= 1

p̂k|kest if γest
k

= 0.
(11)

The predictionp̂k|kest is computed using the estimation algo-
rithm (3); typically it is obtained by predicting forward the
last estimatěpk−1 using the process model (1).

The robot also computes the state predictionp̂k|kest and
uses the following rule for triggering the communication of



the current estimatêpk|k to the operator (Event Triggerin
Fig. 3(b)):

transmitp̂k|k (γest
k = 1) ⇔ dest(p̂k|k, p̂k|kest) ≥ δest (12)

wheredest(p1, p2) ≥ 0 is some measure of the difference be-
tween the PDFsp1 andp2 such thatdest(p1, p2) = 0 ⇔ p1 =
p2, andδest≥ 0 is a design parameter capturing the tolerable
deviation of p̌k from p̂k|k. A suitable choice fordest is the
Kullback-Leibler (KL) divergencedKL (p̂k|k, p̂k|kest), which
can be interpreted as the information loss when the approxi-
mationp̂k|kest is used instead of̂pk|k, [21]. Forn-dimensional
normal random variables withp1(ξ) = N (ξ;µ1,Σ1) and
p2(ξ) = N (ξ;µ2,Σ2), the KL-divergence is

dKL (p1, p2) =
1

2

(

tr(Σ−1
2 Σ1) + (µ2−µ1)

TΣ−1
2 (µ2−µ1)

− n− log(det(Σ1)/det(Σ2))
)

. (13)

In (12), the full PDFs are used for making the transmit
decision. This can be seen as a generalization of triggers
that are based on the mean of a distribution such as in [7],
and triggers on the variance [8]. The KL-divergence is an
information-theoretic measure, which was also proposed for
event-based state estimation in [9].

The following result is immediate from the choice of the
event trigger.

Fact 1: The difference between the operator’s state pre-
diction p̌k and the robot’s state estimatêpk|k is bounded by
δest; that is,

dest(p̂k|k, p̌k) ≤ δest ∀k. (14)
Proof: By contradiction. Assume there is ak such that

dest(p̂k|k, p̌k) > δest. This implies thatp̂k|k 6= p̌k, and by
(11) that p̌k = p̂k|kest. From (12), it then followsγest

k
= 1;

and from (11),p̌k = p̂k|k, which is a contradiction with the
assumption.

Fact 1 guarantees that the approximate estimation on
the operator deviates from the optimal estimation on the
robot by no more thanδest (measured bydest). By allowing
the estimation on the operator to differ from the optimal
estimation on the robot, communication can be saved. The
threshold parameterδest parametrizes this trade-off and is
thus used as a tuning parameter.

Remark 1:Fact 1 is independent of the concrete imple-
mentation of the state estimation algorithm (3). The meaning
of the bound (14) depends on the specific choice ofdest.
If dest = dKL is chosen (as in the simulation example in
Sec. IV), the KL-divergence of̂pk|k and p̌k is guaranteed to
be bounded. However, other choices can be meaningful. For
example, if the mean estimatesx̂k|k andx̌k shall be bounded,
thendest(p̂k|k, p̌k) = ‖x̂k|k − x̌k‖ is a suitable choice.

B. Operator-to-robot link: Event-based control

Using the control design method (4), the operator can
recompute the control policyπk at a stepk from its current
state predictioňxk, which is extracted from the prediction
PDF p̌k, and possibly changed objectives. In this section, we
address the question when an updatedπk shall be sent to the
robot.

Clearly, the need for new control inputs on the robot
depends on the application and, in particular, on the level of
autonomy of the robot. For example, ifπk represents anM -
step open-loop input trajectory as in (7), a new update must
happen at least everyM steps. For an autonomous robot
executing a long-horizon policy, however, it may suffice to
send a new task or mission occasionally. We assume that
πk is an optimal policy for an associated costJπk

as in
(6), which provides a common and fairly flexible way of
expressing a control objective. The need for a new policy
on the robot is measured in terms of the expected cost
improvement.

Let γctrl
k

∈ {0, 1} denote the event whether or not the
operator communicatesπk at timek, and letkctrl denote the
last timek whenγctrl

k
= 1. Denote the policy currently used

on the robot by̌πk (block Control in Fig. 3(b)). Then,

π̌k =

{

πk if γctrl
k

= 1

πkctrl if γctrl
k

= 0;
(15)

that is, the robot uses its current policy until it receives a
new one from the operator.

The operator keeps track of the current policyπ̌k (Control
in Fig. 3(a)) and makes the following transmit decision
(Event Triggerin Fig. 3(a)):

transmitπk (γctrl
k = 1) ⇔ dctrl(πk, πkctrl) ≥ δctrl (16)

where dctrl(π1, π2) ≥ 0 is a measure of the difference
between policiesπ1 and π2, and δctrl ≥ 0 is a design
parameter. In the context of optimal control, a reasonable
choice fordctrl is in terms of the associated costs:

dctrl(πk, πkctrl) = |Jπk
(k, x̌k)− Jπ

kctrl (k, x̌k)|. (17)

Notice that the two policiesπk and πkctrl are typically
computed at different times (k > kctrl for γctrl

k
= 0 ), yet,

they are both evaluated given the latest time and state as
known by the operator, namelyk and x̌k.

The following result is analogous to the estimation case:
Fact 2: The difference between the current control policy

π̌k employed by the robot and the optimal policyπk as
determined by the operator is bounded byδctrl; that is,

dctrl(πk, π̌k) ≤ δctrl ∀k. (18)
Again, δctrl has the role of trading off communication for

performance; in this case, communication from operator to
robot, and performance in terms of control. Remark 1 applies
analogously to Fact 2.

C. Control on the robot

To complete the explanation of the proposed architecture
as depicted in Fig. 3, we emphasize that the robot uses
the state predictioňxk rather than its state estimatêxk|k to
evaluate the current control policy; that is,

uk = π̌k(k, x̌k) (19)

(cf. block Control in Fig. 3(b)). While the robot clearly has
access to the improved estimatex̂k|k and could implement

uk = π̌k(k, x̂k|k), (20)
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Fig. 4. Two-link robot arm moving in a horizontal plane. The robot is
to reach fromqinit = (0, π) to qgoal = (π/2, 0). Physical parameters are
given in Table I.

the operator does not knoŵxk|k for k 6= kest, and thus cannot
evaluate the corresponding policy costJπ̌k

(k, x̂k|k). Hence,
if (20) is used, a bound as in Fact 2 on the difference of
current and optimal control cannot be guaranteed without
further communication. Nonetheless, one may consider (20)
as an alternative to (19) if local performance is more impor-
tant than being able to exactly represent this performance at
the operator.

IV. SIMULATION EXAMPLE

We illustrate the proposed method through simulations of a
reaching task for a robotic arm in two dimensions, see Fig. 4.
The robot has two links and is to move its end-effector from
the starting position (q1 = 0, q2 = π) to the goal position
(q1 = π/2, q2 = 0) in 20 s. Reaching is a basic component
of several tasks in the DRC scenario, such as opening a door,
removing debris, and closing a valve, [2].

The nonlinear robot model (1) has the statesx =
(q1, q2, q̇2, q̇2), joint torque inputsu = (τ1, τ2), and a
sampling timeTs = 0.01s. Process noisevk is modeled
as additive Gaussian noise with zero mean and standard
deviation (STD)2 · 10−4 (independent for each dimension).
The robot makes noisy measurementsyk of the joint angles
(zero-mean, Gaussian measurement noisewk with STD
0.01).

A. State estimation

The robot runs an EKF as the state estimation algorithm
E . That is, it approximates the state PDFp̂k|k by meanx̂k|k

and variancePk|k. Analogously, the state predictors on the
robot and the operator implement the state prediction step of
the EKF using the process model (1) to recursively compute
approximate meaňxk and varianceP̌k. These are reset to
x̂k|k andPk|k at triggering instantsγest

k
= 1. All estimators

are initialized with the known starting configuration.

TABLE I

ESSENTIAL PARAMETERS OF THE2D ROBOT ARM (CF. FIG. 4).

Link 1 Link 2
massm1 3.1 kg massm2 1.8 kg
inertia I1 0.4 kg m2 inertia I2 0.032 kg m2

length l1 0.31 m length l2 0.34 m

For the triggering rule (12), the KL-divergence (13) is used
with µ1 = x̂k|k, µ2 = x̌k, Σ1 = Pk|k, andΣ2 = P̌k. As
triggering threshold, we choseδest= 10.

B. Control

As the control design algorithmC, we take iLQG [17],
which provides an approximately optimal solution for the
nonlinear control problem. An advantage of iLQG over open-
loop optimal control is that it yields afeedback policy,
which can be expected to be more robust in presence of
disturbances, and hence require less communication from the
operator. Stage and terminal cost in (9) are chosen as

gk(xk, uk) = 10−4 uT
kuk

gk+M (ξ) = (ξ − xg)
T diag(104, 104, 103, 103) (ξ − xg)

wherexg = (π/2, 0, 0, 0) is the goal state. The recursions of
the iLQG algorithm are terminated if sufficient accuracy is
achieved, or after a maximum of 20 iterations.

The approximately optimal iLQG policy (10) is recom-
puted every1 s, and correspondingly, the transmit decision
(16) is made at the same rate. A new iLQG policy is
computed given the current state predictionx̌k, and the
horizonM in (9) is adjusted to capture the remaining time
for task completion. While the EKF computes updates at
every stepk (i.e. every0.01 s), the control policy is updated
at a lower rate. This is reasonable, since the feedback control
system on the robot can be expected to compensate for short-
term disturbances. Clearly, if computational performance
at the operator permits, the control policy and transmit
decisions could also occur at every step. For the control
triggering decision (16), the cost difference (17) is used,and
δctrl = 10−6 is chosen as the threshold.

C. Simulation results

The system trajectories of an example simulation run over
the task horizon of20 s are shown in Fig. 5, together with
the communication decisions for the robot-to-operator link
(12) and the operator-to-robot link (16). As can be seen,
communication of estimates (γest) and control policies (γctrl)
is triggered whenever the corresponding signal exceeds the
threshold. Between6 s and12 s, the additive state noise was
increased by a factor 50 representing, for example, external
perturbations, an actuation problem, or a moving platform.
We assume that the increased variance is known by the robot
estimator, but not at the operator.

Figure 6 shows the average of the triggering signalsγest

and γctrl over 50 simulation runs. Clearly, for the first six
seconds, there is very little communication of estimates and
control policies. Communication rates go up in the period
from 6 s to 12 s with increased uncertainty (process noise),
as expected. Superimposed is the tendency that control
decisions are taken toward the end of the horizon: in the
beginning, there is still significant time left to reach the
goal and the robot can basically be left to its random
perturbations. Only toward the end, control action needs to
ramp up to ensure reaching the goal state. This phenomenon
of delayed decision making is typical for stochastic optimal
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Fig. 5. System trajectories and communication decisions for the 2D arm
simulation example. TOP TWO GRAPHS: angles and input torques for arm
1 (q1, u1 in black) and arm 2 (q2, u2 in gray). MIDDLE TWO GRAPHS:
estimation triggering decision (12) withdest(p̂k|k, p̂k|kest) in black and the
thresholdδest in red, as well as the corresponding triggersγest. BOTTOM
TWO GRAPHS: analogous signals for the control decision (16). Notice that
control communication decisionsγctrl are taken every1 s, while estimation
decisionsγest are made every0.01 s. Discontinuities in the control input
signals are due to control or estimation communication updates.

control [22], and can also be observed in the communication
patterns here.

D. Performance-communication trade-off

Next, we discuss how control and estimation performance
depend on the thresholdsδest and δctrl. Estimation perfor-
mance of the remote estimation problem is measured as the
difference dest of the operator’s estimation to the robot’s
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Fig. 6. Communication decisionsγest andγctrl averaged over 50 simulation
runs.

estimation (which is optimal in the sense that it exploits all
sensor data). We definēdest as the time-average of the signal
dest(p̂k|k, p̌k) over the simulation horizon, and the average
estimation errorPest as the average of̄dest over 50 simulation
runs. Similarly, we measure the average control costPctrl as
the average of̄dctrl over 50 simulations, wherēdctrl is the
time-average ofdctrl(πk, π̌k).

For fixedδctrl = 10−6 and differentδest in the range from
0 to 100, we ran 50 simulations each, and computedPest,
as well as the average estimation communication rateRest.
The average rateRest is normalized such thatRest = 1
corresponds to full robot-to-operator communication (γest

k
=

1 for all k) andRest= 0 corresponds to no communication.
Note thatδest= 0 implies full communication (Rest= 1) and
optimal performance (Pest = 0) and, hence, corresponds to
the reference scenario with periodic communication in Fig.2.

The obtained average estimation errorsPest are plotted
versus the average communication ratesRest in Fig. 7.
As expected, the estimation error increases with reduced
communication. Remarkably, a significant reduction of com-
munication can be achieved at only a mild increase in
estimation error (for example,Rest = 0.19 andPest = 0.65
for δest = 2). Fact 1 implies that the estimation error is
bounded:Pest ≤ δest. The upper bound is shown in red in
Fig. 7. Notice that this bound is not only guaranteed for
the average error, but for the actual error at every stepk
(dest(p̂k|k, p̌k) ≤ δest).

The corresponding results for the average control costPctrl

versus average control communicationRctrl are shown in
Fig. 8. For these,δest = 10 was kept constant, andδctrl was
varied in the range from0 to 10−4.

V. CONCLUDING REMARKS

The proposed framework for remote robot operation with
reduced communication was demonstrated in a simulation
example of a 2D robot arm, using an EKF and iLQG
as the implementations of the estimation and control al-
gorithms. However, the framework is modular and other
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algorithms can readily be used. Similarly, the measures for
the triggering decisions (KL-divergence for estimation and
quadratic cost for control) are specific choices, and others
may be meaningful for different applications (cf. Remark 1).
Among other aspects, the simulation example demonstrates
how asymmetric communication schemes can be obtained
(communication of control policies occurs at significantly
lower rates than estimation updates).

Encouraged by the simulation results herein, we intend to
experimentally validate the proposed framework on a robotic
platform in future work. The underlying ideas for event-
based state estimation were already successfully applied in
previous work [7], where they were used to stabilize the
Balancing Cube [23], a 3D multi-body inverted pendulum.

Theoretical aspects interesting for future work concern
robustness to model uncertainties and network imperfections
(delays and packet drops), extensions to remote operation
of multiple robots, and establishing hard bounds on the
communication rates.
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