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Abstract— An event-based communication framework for
remote operation of a robot via a bandwidth-limited network
is proposed. The robot sends state and environment estimation
data to the operator, and the operator transmits updated contol
commands or policies to the robot. Event-based communication
protocols are designed to ensure that data is transmitted only
when required: the robot sends new estimation data only if
this yields a significant information gain at the operator, and
the operator transmits an updated control policy only if this
comes with a significant improvement in control performance.
The developed framework is modular and can be used with any
standard estimation and control algorithms. Simulation results
of a robotic arm highlight its potential for an efficient use
of limited communication resources, for example, in disaster-
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Fig. 1. An operator supervises the mission of a robot from a teraite

by monitoring real-time state and sensor data received frenrdhot, and
by sending updated control policies to the robot. Commuranaltietween
the operator and the robot is via a resource-constraintarkivihence data
exchange shall be limited to instants when new data is negessa

response scenarios such as the DARPA Robotics Challenge.

. INTRODUCTION this can lead to congestion of the network with irrelevant

Autonomous robots remotely operated by a human froflata and an inefficient use of the available communication
a remote location are essential assets in current and futligsources. Herein, we develop a framework by which the
disaster-response scenarios; see, for example, the @ngof®mmunication from operator to robot, and vice versa,
decommissioning of the Fukushima nuclear power plant [1js managed automatically by event-triggering mechanisms
Harsh conditions that are persisting in such scenariosoft@nsuring that data exchange happenly when necessary
lead to degraded communication with limited bandwidth Recently, event-based communication has received a lot
between the robot and the operator. For an efficient operaticof attention in the controls community as an alternative to
communication must be managed such that only necessdgriodic (i.e. time-based) communication (see recentesisrv
data is transmitted in order to avoid the congestion of thg]-[6]). The underlying idea of event-based methods for
communication network with irrelevant data. Because of thestimation and control is to trigger the communication of
importance of resource-constraint communication in reabata between the components of a control system if, and
world applications, the ongoing DARPA Robotics Challeng@nly if, an update is required to meet a certain specification
(DRC) [2] requires the participating teams to control theife.g. stability, estimation or control performance).
robots under limited communication [3]. We apply event-based estimation and control to the remote

In this paper, we consider the remote operation scenariobot operation problem in Fig. 1. For the robot-to-operato
shown in Fig. 1. For monitoring purposes, the robot send®mmunication, we follow ideas from event-based state
state estimation data, which it accumulates from its locadstimation [7], [8]. According to these, the receiver (here
sensors, to the operator. The operator influences the sobdie operator) relies on model-based state predictionsnasti
action by sending new input trajectories or control policie when the sender (the robot) does not transmit new data.
Typically, communication between the components occurBhe sender implements a copy of this state predictor, and
periodically at fixed rates. While periodic communicationcompares the predictor’s information to its own estimator
allows for comparably straightforward analysis and desigimformation (which exploits all sensor data). An updatedest
of the remote control system, it comes with a fundamentastimate is sent to the operator only if the prediction is not
limitation: communication instants are predetermined antjood enough” already. The triggering decision is made by
not chosen in relation to the system’s current operatingomparing the difference of the two state probability dgnsi
conditions, or the information content of the data. Thamefo functions (PDFs) as suggested in [9].

For the operator-to-robot link, we implement an event-
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the operator. This difference is measured in terms of an Outline of the paper: After introducing the individual
associated control cost. system components (robot, estimation algorithm, control

The problem of limited communication specifically for thealgorithm) in Sec. I, the main framework for event-based
DRC scenario is also addressed in [10]. Therein, the authg#@mmunication in remote robot operation is developed in
consider a manipulation task and develop a framework, iB€c. lll. Section IV presents simulation results of a reaghi
which the human operator can directly control various corfask highlighting the achievable communication reduction
munication rates via a user interface. In striving for geeat The paper concludes with remarks in Sec. V.
autonomy of the human-robot operation, we seek to automateNotation: We usek as the general time index. For a
communication decisions using event-based methods hereffiscrete-time signak, we uses, to denotes evaluated at
The operator specifies a desired accuracy level for contrthidex &, and we write sy, .k, with k1 < ko to refer to
and estimation, and algorithms at the operator and the rob®%€ sequence sy, , sk, +1,. .., sk, }. E[-|] denotes the con-
site automatically determine when to transmit data. ditional mean, Vaf:-] the conditional variance, anel-[-) a

A related problem to the one herein is that of teleoperatiofPnditional PDFA/(E; 1, V) denotes the PDF with argument

(see [11]-[13], for example). The topic encompasses a vafsto_f a (multivariable) normal distribution with megn and
body of literature, which can only be touched upon here. I§a"iancev’.

teleoperation, a machine is operated by a human through 1. PRELIMINARIES
a remote communication link with special emphasis on In this section, we introduce the robot model, the state

the object|yes ?f stability ar_1d e Iep;eslence_ [12]. Thﬂ?fo estimator and the controller to set the stage for the digmoiss
compensating for communication delays s a main focUg e eyent-based architecture in Sec. I1l. No specificahoi

in control for teleoperation. In the application considere of estimation and control algorithms is made to emphasize

herein, the.robot s ass‘,‘med to. posses a certain level t?lfe modularity of the approach, which is independent of the
autonomy; in particular, it can still operate safely even

- , oncrete algorithms. In the simulations in Sec. IV, a specifi
low operator communication rates. The focus of this Woriéxample is presented

is on reducing communication, rather than compensating

for delays. Nonetheless, the two problems are related. FO¢r System description

example, using an architecture where a partial copy of The robot dynamics are described by a general nonlinear,

the robot information is maintained at the operator (statéiscrete-time model

prediction), and a partial copy of the operator informati®n

kept at the robot (control policy) is a common principle also Tt = Ji(@n, ik V) (1)

in teleoperation [11]. Event-based approaches have alo bewith time indexk > 0, statex, € R"=, control inputu; €

suggested in the context of teleoperation. For example, iR"«, and process noise,. Measurementg;, by the robot's

[13], deadband control is used, where new data is sent if tleensors are described by

difference of the current and the last communicated value ex —h >

ceeds a threshold. Here, we use more sophisticated triggers Y = Tk (@, W) )

for estimation, triggers based on the state PDFs measurindiere w,, is sensor noise. The PDFs of the noise variables

their information content; and for control, triggers comipg  are assumed to be known.

control policies in terms of their expected performance. Depending on the application, the dynamics (1) can cap-

In summary, this paper makes the following contributionsture the robot's internal states (e.g. positions, velesiti

forces), as well as relevant environment states (e.g. ctmta

« Development of a fra_mev_vo_rk for remote_ operatlon Ofobstacles). The robot dynamics may include local contr®lle
autonomous robots with limited communication by ap-

ing id ¢ based R q guaranteeing a certain level of autonomy. In particulag, th
plying ideas from event-based estimation and contro ynamics (1) are typically stable in our framework, such tha

The framework is modular in that any standard estimag,¢e operation can be guaranteed without requiring input at
tion and. COT‘”O' methpd can be gsed._ . ahigh rate from the operator. However, stability of (1) i$ no
. Genera}llzat]on of typlcgl everlltftnggenng meChan'SmSétrictly necessary for the derivations herein.
for e_s_tlmanon, transmit decisions are based on the \ye'consider an architecture as in Fig. 1, where the robot
conditional state PDFs, and for control, they are baseghs an embedded computer, which runs local control and
on costs associated with CoerI, pohqes. estimation algorithms, and which is connected via a network
- Performance guarantees are given in terms of UPPRfy o a remote operator (bi-directional communication).

bounds on the control and estimation degradation due B the purpose of this work, we assume that network

the reduction in communication (Facts 1 and 2). Thesg,munication is without data loss. This may be ensured

bounds are induced by the event-based architecture agd |, _jevel protocols using acknowledgments. We further

thus independent of the choice of estimation and contralstract communication to be instantaneous without délays
algorithms, and they can be adjusted by the user.
« Demonstration of the method'’s effectiveness in reducing *We remark that delays are not as critical in the scenario dersil herein

communication between operator and robot througf '™ for example, teleoperation [11]-{13], since we assumerebot to
. . . . ave a certain level of autonomy and not require operatort$npti high
simulations of a robotic arm reaching task. rates for safe operation.



B. State estimation A reasonable and common choice for automatic control
Let p(pe|your, uow) With £ > 0 denote the conditional design are optimal control methods (see e.g. [15]). With

PDF of the stater;,, given all measurements and inputs upthese, a policyr, is found by mir_1imizin_g a cost funct_ion.
to and including timé:. For simplicity, we also writey, ;¢ Ltet ;]75[(&’ :z:%)t_be t2e co;lt_lo; atphplylngt; pfollgy \.Nh%r: starlt_lr?g
to denotep(zx[yor, o). at stater;, at timek, an e the set of admissible policies.

We assume that there is some state estimation algoﬁl;hmThen
which computes the conditional PO or an approximation
p, from datayg.x, ug.x and the model (1), (2):

T = arg grnelﬁl JIr(k, xy) (6)

is the corresponding optimal control policy.
E: Input.  datayo., uo.s, prediction horizory (3) We give some examples far.
Output:  (approximate) PDF o Open-loop input trajectory:
g =p(x ks UO:
Pr+elk P(Trrelyo:r, vo:k) ma(k, zr) = 7 @)

with r.,4 a7 @ constant sequence.
o Linear quadratic regulator (LQR) [16]: For linear (1),
yr = 2k, and an infinite-horizon cost\{ — o)

Furthermore, we assume that there is a method defined to
extract an estimate;,,, from the PDFp;_ ;. (to be used

for state-feedback control, for example). Typical choiaes

the mean, or maximum likelihood estimate.

Notice that the algorithm (3) can be used for state esti- k+M
mation (i.e. to compute,;) and state predictionpf. ., S (k) = lim 7 E > @k Quy+(m(xx)) R ()
¢ > 1). Standard examples fér include the following, [14]: > k=k
« Kalman filter (KF): for a linear time-invariant sys- with Q and R positive definite weights, the solution to
tem (1), (2) with Gaussian noise, the conditional (6) is
state PDF is Gaussian; that is(xgi¢|yo.x, vo:k) = m(k, x) = Fay, (8)
N (k405 Zrtojes Petor). The KF recursively com- _ _ S
putes conditional mean and variancé; s, = whereF' is a constant feedback gain, which is indepen-
E [@k4e[yos o] @nd Pyyg = Var [zxo|yo.r, uo.r]. dent. of x5, and k, and can readily be computed from
In this case£ is exact, i.€ Py ok = Drre[k- the Imear'model and ngght@ andR (§ee [16]).
. Extended Kalman filter (EKF): recursively computes e lterative linear quadratic Gaussian (iLQG) [17]: For
approximations &4 x  ~  E[zrre|yok, uo:k] and nonlinear (1),yx = xx, and finite-horizon cost
Pioyor = Var[xk+g|y9:k,u0:k] by Iinearizing_ ), (2 _ kM
about the current estimate. The corresponding Gaussian — j ( 2,)=E 9E+N[(xE+M)+ZQk(mk;uk) 9)
PDF approximates the true PDB{x¢|yo.k, uo:k) = =k

N(Zptt; Trogis Pogopie) = D(Thte|Yo:ks Uoik)- .
whereg;, and g, denote stage and terminal cost, an

C. Control approximatesolution to (6) is given by

We consider a suita_lble contro_l design met_h@dthat (b, z) = Fray + 7% (10)
generates a control policy over a time horizbh given the _
current robot state;, at timek = k (or a state estimate) and where the sequences foy, and F}, are obtained by
control objectives (e.g. reference, goal state): iteratively solving linear-quadratic approximations of

the nonlinear control problem (see [17] for details). The
C: Input: time k, statex;, control objectives (4) solution depends on the starting staje
Output:  policy 7y Notice that the above are examples, and many other

approaches for control design are conceivable (such as othe
iterative, approximate optimal control methods [18]-)20]
The architecture proposed herein is not specific to the ehoic
up = mp(k,xy), k=k ... k+M. (5) of control design method’, and neither to the choice of
estimation algorithn€.

wherem, is a time-varying control policy mapping the next
M states to inputs:

We emphasize that the indek’‘in 7, stands for the time )

when the control policy was computed, while the argument3- Problem formulation

k andxy, are the current time and state, at which the policy Figure 2 depicts a straightforward implementation of a

is evaluated to compute input. supervisory control architecture for an autonomous robot.
Notice thatC may either be a computer algorithm, or itThe robot implements a state estimatorand controller

may represent the direct input of a human operator. Far, onboard; that is, under normal conditions, the robot

example, (5) can represent an open-loop input trajectorgan operate autonomously. For monitoring purposes, the

which is determined by a human operator placing suitabl®bot communicates its state estimate to the operator at a

waypoints for the robot on an interactive map of the envipredetermined, fixed update rate (such as every/stepue

ronment, given the current PDF of the robot state. to possibly large computational requirements and to allaw f



uk ROBOT Yk ' OPERATOR
4 :Lr T >
e p 5 1
OPERATOR v
¥ -
: Tk RESET
DesignC « Control State —> E.V ent e = N4
o T Estimation Trigger Control %
g £ 4 Tk ;
T — E RESET T - E
% T D i | & zZ
. . k|k Tklk -
Pro|ks Tk ‘ | Con?rol i B Sg-ﬂg
ROBOT COMPUTER Design < Prediction
C g RESET

Fig. 2. Standard implementation of a supervisory architecfor con-

trolling a robot. By running state estimatér and control policyr, on (a) Operator side
its embedded computer, the robot has a certain level of autandhe

operator may send an updated policy over the network linkef@mple,

when the robot task changes. The robot continuously comniesiche ug Uk

state PDFpy, (or state estimatety ;) to the operator for the purpose

of monitoring. Communication between robot and operator iscafly ,
periodic, or determined by the operator. In Sec. Ill, we pegpa modified 3 3
architecture that automatically contreldhiendata needs to be send over the
network and thus saves communication resources. Control State State
Tk Prediction Estimation

é P RESET RESET € &
human interventions, new control policiésare computed at g 1 T Pk
the remote operator site. If reference inputs are sent to the E » Event |, |
robot as in (7), this typically occurs also at a fixed rate. If | Z Trigger
the operator sends updated policy parameters as in (18), thi J_Ll
may happen at a lower rate or on occasion. ndha)

The object of this paper is to develop a framework for \ ROBOT COMPUTER

automating the communication between robot and operator,
and this way ensuring an efficient use of the communication (b) Robot side

resource. Each unit shall transmit data to the other sidge, . . .

. .. ) ig. 3. Proposed architecture for remote operation of a robsing
only Whe:n the other s|(-je IS In need of new Qatg. the rob@Vent-based communication for both the robot-to-operatdr (explained
communicates new estimation data only if this significantlyn Sec. IlI-A) and the operator-to-robot link (Sec. lll-BEvent-based
increases the operator's information. and the Operatadsserf:ommunication is indicated by dashed arrows, while contisuftow of

. . . . Lo data (periodic communication) is shown by solid arrows.
a new policy only if this yields significantly better control

performance.
developed in [7], [8] for reducing communication in net-
worked systems with multiple distributed sensor-estimato
Event-based communication schemes are introduced digents. The receiving side (here, the operator) implements
this section to address the objective of automatic and effici the same estimation algorithi& as the sending side (the
communication between robot and operator. The proposedbot) in order to compute a prediction of the state PDF
architecture is depicted in Fig. 3 and explained in théblock State Predictionin Fig. 3(a)). That is, the operator
following subsections. compensates for not knowing,;, by computing predictions
. o Prixes, Wherek®' < k is the last time an update was received.
A. Robot-to-operator link: Event-based state estimation The robot implements a copy of the operator’s state predicto
The robot computes the current state PRF; at everyk  (State Predictiorin Fig. 3(b)), and sends an updaig,, only
from the lastest sensor measurements using an estimatibithe prediction is not “good enough.”
algorithm (3) (denoted by the blocltate Estimationin Let ¢ste {0,1} denote the event that the robot commu-
Fig. 3(b)). Given the sensor equipment and estimation algeicatespy;, at time k (y§ = 1), or not ¢ = 0). The
rithm &, py,. is the optimal estimate. The question addressegpberator’s knowledge of the state can then be formalized as
in this subsection is, whepy,;, is to be communicated to the {

IIl. EVENT-BASED COMMUNICATION

A I est __
operatof, and how the operator compensates for not always Dr lfklk ff Tk t— 1
receiving the latest estimate. Drlgest if 2> =0.

_The approach for managing the robot-to-operator ComMtfhe predictionyy e« is computed using the estimation algo-
nication follows the key ideas of event-based state estimat rithm (3); typically it is obtained by predicting forwardeh

last estimatej,_1 using the process model (1).
2|f instead of the full PDFpy |, a lower-dimensional quantity related to Pr-1 9 P (1)

the PDF (such as the state estimafg;) is communicated, the following The robot al§o CompUteS' the 'State predlctm?sz a_nd
applies with slight modifications. uses the following rule for triggering the communication of

11)



the current estimatg,;, to the operator Event Triggerin Clearly, the need for new control inputs on the robot
Fig. 3(b)): depends on the application and, in particular, on the lefel o
autonomy of the robot. For example,sf, represents ai/-

step open-loop input trajectory as in (7), a new update must
whered®*{(p;, py) > 0 is some measure of the difference behappen at least every/ steps. For an autonomous robot
tween the PDFg; andp, such thau®{p;,p,) =0 < p; =  executing a long-horizon policy, however, it may suffice to
P2, andd®st > 0 is a design parameter capturing the tolerablsend a new task or mission occasionally. We assume that
deviation ofpy. from py ;. A suitable choice fow®sis the 7 is an optimal policy for an associated cogf, as in
Kullback-Leibler (KL) divergenced<- (Dk|k> Prjges), Which  (6), which provides a common and fairly flexible way of
can be interpreted as the information loss when the approxaxpressing a control objective. The need for a new policy
mationpy, e is used instead qfy, |, [21]. Forn-dimensional on the robot is measured in terms of the expected cost
normal random variables with;(¢) = N(;p1,%1) and  improvement.

transmitpy, (i =1) < d* Py, Prjpes) > 6% (12)

p2(&) = N(&; 2, X2), the KL-divergence is Let 7¢" € {0,1} denote the event whether or not the
‘L 1 . S operator communicates, at timek, and Iet@Ctrl denote the
d™(p1,p2) = 5(“(22 1)+ (p2—p1) By (p2— ) last timek when~%" = 1. Denote the policy currently used
on the robot byr, (block Control in Fig. 3(b)). Then,
—n — log(det(X;)/ det(32))). (13)
) me if A =1
In (12), the full PDFs are used for making the transmit TE =Y g if A8 = 0 (15)
Ectr k — 5

decision. This can be seen as a generalization of triggers
that are based on the mean of a distribution such as in [#hat is, the robot uses its current policy until it receives a
and triggers on the variance [8]. The KL-divergence is afReéw one from the operator.
information-theoretic measure, which was also proposed fo The operator keeps track of the current potigy(Control
event-based state estimation in [9]. in Fig. 3(a)) and makes the following transmit decision
The following result is immediate from the choice of the(Event Triggerin Fig. 3(a)):
event trigger. ; ctrl ctrl ctrl
Fact 1?gThe difference between the operator’s state pre- transmitmy (757 = 1) & &7 (m, mpen) 20 (16)
diction p;, and the robot’s state estimapg|;, is bounded by where d®(my,75) > 0 is a measure of the difference
oSt that is, between policiest; and 7w, and 5" > 0 is a design
d**(Projr, Pr) < 0% k. (14) parameter. In the context of optimal control, a reasonable
Proof: By contradiction. Assume there iskasuch that choice ford®! is in terms of the associated costs:
d®(prip, Dr) > 6%t This implies thatp,, # pr, and by ctrl _ y y
(11) trLatpk = Ppjpes. From (12), it then| followsyest = 1; (i, ) = [T, (K Tk) = Toe g (i T a7
and from (11),5, = pyx, Which is a contradiction with the Notice that the two policiesr; and .« are typically
assumption. m  computed at different timesk(> £ for 4¢" = 0 ), yet,
Fact 1 guarantees that the approximate estimation a@hey are both evaluated given the latest time and state as
the operator deviates from the optimal estimation on thknown by the operator, namely and i,.
robot by no more thad®s (measured byi®s). By allowing The following result is analogous to the estimation case:
the estimation on the operator to differ from the optimal Fact 2: The difference between the current control policy
estimation on the robot, communication can be saved. The. employed by the robot and the optimal poliey, as
threshold parametef®s' parametrizes this trade-off and is determined by the operator is boundeddy; that is,
thus used as a tuning parameter. ctrl . ctrl
Remark 1:Fact 1 is independent of the concrete imple- L e A" "k, Tk) < 0 k. . (18)
) S . .~ Again, 6™ has the role of trading off communication for
mentation of the state estimation algorithm (3). The megnin

of the bound (14) depends on the specific choicel®t performance; in this case, communication from operator to
If det — dK- is chosen (as in the simulation examplé ir]robot, and performance in terms of control. Remark 1 applies

Sec. 1V), the KL-divergence gfy,;, andp;. is guaranteed to analogously to Fact 2.

be bounded. However, other choices can be meaningful. FGt Control on the robot

example, if the mean estimateg; and:;, shall be bounded, 7o complete the explanation of the proposed architecture
then d**{pyy., pr) = || 2k — x| is a suitable choice. as depicted in Fig. 3, we emphasize that the robot uses

B. Operator-to-robot link: Event-based control the state predictiort;, rather than its state estimatg; to

Using the control design method (4), the operator Ca(ra]valuate the current control policy; that is,

recompute the control policy, at a stepk from its current up = 7 (k, Tk) (19)
state Vpred|ct|onrk., which is extra_cteq from thg pred!ctlon gcf. block Control in Fig. 3(b)). While the robot clearly has
PDF p,, and possibly changed objectives. In this section, WE s 1o the improved estimate. and could implement
address the question when an updatgdhall be sent to the P Rk b

robot. up = Tr(k, Trjk), (20)



For the triggering rule (12), the KL-divergence (13) is used
with H1 = i‘k\kr Ho = Tk, ¥ = Pk|k: andEQ = Py. As
triggering threshold, we chosg&s'= 10.

B. Control

As the control design algorithr@, we take iLQG [17],
which provides an approximately optimal solution for the
nonlinear control problem. An advantage of iLQG over open-
loop optimal control is that it yields deedback policy
Fig. 4. Two-link robot arm moving in a horizontal plane. Theboo is which can be expected to be more robust in presence of
to reach fromginir = (0,7) 0 ggoal = (7/2,0). Physical parameters are disturbances, and hence require less communication frem th
given in Table I. ; !

operator. Stage and terminal cost in (9) are chosen as

t gr(Tp, up) = 1074 uluk
the operator does not kn(_mk‘k fo_r k # k) anAd thus cannot Gerar(€) = (€ — xg)T diag(10%, 104, 10%,10%) (¢ — )
evaluate the corresponding policy cobt, (k, 2y)). Hence,
if (20) is used, a bound as in Fact 2 on the difference ofherexq = (7/2,0,0,0) is the goal state. The recursions of
current and optimal control cannot be guaranteed withotiie iLQG algorithm are terminated if sufficient accuracy is
further communication. Nonetheless, one may consider (2@ghieved, or after a maximum of 20 iterations.
as an alternative to (19) if local performance is more impor- The approximately optimal iLQG policy (10) is recom-
tant than being able to exactly represent this performance puted everyls, and correspondingly, the transmit decision
the operator. (16) is made at the same rate. A new iLQG policy is
computed given the current state predictiop, and the
V. SIMULATION EXAMPLE horizon M in (9) is adjusted to capture the remaining time
. . ) for task completion. While the EKF computes updates at
We_lllustrate the propo_sed mgthod th_rough_5|mulat|ons_ Ofé\/ery stepk (i.e. every0.01s), the control policy is updated
reaching task for a robotic arm in two dimensions, see Fig. 4; 5 jower rate. This is reasonable, since the feedbackatontr
The robot has two links and is to move its end-effector frony gtem on the robot can be expected to compensate for short-
the starting positiong, = 0, ¢ = 7) to the goal position ey gisturbances. Clearly, if computational performance
(@1 =7/2, g2 = ,O) In 20s. Reachujg is a basic componentat the operator permits, the control policy and transmit
of several tasks in the DRC scenario, such as opening a dogkcisions could also occur at every step. For the control
removing debris, and closing a valve, [2]. triggering decision (16), the cost difference (17) is used
The nonlinear robot model (1) has the states = sl _ 13=6 js chosen as the threshold.

(q1,92, 42, ¢=2), joint torque inputsu = (71,72), and a
sampling timeTs = 0.01s. Process noise;, is modeled C. Simulation results
as additive Gaussian noise with zero mean and standardThe system trajectories of an example simulation run over
deviation (STD)2 - 10~* (independent for each dimension).the task horizon o20s are shown in Fig. 5, together with
The robot makes noisy measuremeptsof the joint angles the communication decisions for the robot-to-operatok lin
(zero-mean, Gaussian measurement naigse with STD  (12) and the operator-to-robot link (16). As can be seen,

0.01). communication of estimates$) and control policies{“)
o is triggered whenever the corresponding signal exceeds the
A. State estimation threshold. Betweefis and12 s, the additive state noise was

The robot runs an EKF as the state estimation algorith#icreased by a factor 50 representing, for example, externa
€. That is, it approximates the state P[5, by meani, perturbations, an actuation proble_m, or a moving platform.
and varianceP, .. Analogously, the state predictors on theWWe assume that the increased variance is known by the robot
robot and the operator implement the state prediction step gStimator, but not at the operator. o
the EKF using the process model (1) to recursively compute Figure 6 shows the average of the triggering signgfs

approximate mear;, and varianceP,. These are reset to and 7" over 50 simulation runs. Clearly, for the first six
Zxx and Py, at triggering instants#s = 1. All estimators seconds, there is very little communication of estimates an

are initialized with the known starting configuration. control policies. Communication rates go up in the period
from 6s to 12s with increased uncertainty (process noise),
as expected. Superimposed is the tendency that control

TABLE | decisions are taken toward the end of the horizon: in the
ESSENTIAL PARAMETERS OF THE2D ROBOT ARM (CF. FIG. 4). beginning, there is still significant time left to reach the
) Orks goal and the robot can basically be left to its random
massm;  3.1Kg massms 1.8 kg perturbations. Only toward the end, control action needs to
inertia I; 0.4 kg n? | inertialz  0.032 kg n? ramp up to ensure reaching the goal state. This phenomenon
lengthly 0.31m | lengthl; 034 m of delayed decision making is typical for stochastic optima



W~

Angle (rad)
[N}

=]

01
1S
£
) 0
>
=3
e

|
@
-

100
g
= 50}
2
]
0
1t . oo oo .o oo o
g
.
0
0 5 10 15 20
x10~5
2
S
=1
3
o]
0 e
0 5 15 20
1t i ieie e e e
B
L
0 5 10 15 20

Time (s)

Fig. 5. System trajectories and communication decisionsHer2D arm
simulation example. TOP TWO GRAPHS: angles and input torqoiearim
1 (q1, w1 in black) and arm 24s, us in gray). MIDDLE TWO GRAPHS:
estimation triggering decision (12) WiW?Sl(ﬁk‘k,ﬁk,lkest) in black and the
thresholdé®stin red, as well as the corresponding triggef§t BOTTOM
TWO GRAPHS: analogous signals for the control decision.(lg}ice that
control communication decisiong™ are taken every s, while estimation
decisions®St are made every).01s. Discontinuities in the control input
signals are due to control or estimation communication updates
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Fig. 6. Communication decisiongstand~°" averaged over 50 simulation
runs.

estimation (which is optimal in the sense that it exploits al
sensor data). We defin& as the time-average of the signal
d®(pyk, pr) over the simulation horizon, and the average
estimation erroP®s'as the average @' over 50 simulation
runs. Similarly, we measure the average control @¥$t as
the average ofi®™ over 50 simulations, wherd® is the
time-average ofi®(m,, 7y,).

For fixed 6" = 10~% and differents®sin the range from
0 to 100, we ran 50 simulations each, and compufetf!,
as well as the average estimation communication Tft&
The average ratéR®s! is normalized such thaR®st = 1
corresponds to full robot-to-operator communicatiof*(=
1 for all k) andR®'= 0 corresponds to no communication.
Note thats®st = 0 implies full communication®®s'= 1) and
optimal performance?®® = 0) and, hence, corresponds to
the reference scenario with periodic communication in Eig.

The obtained average estimation errg?& are plotted
versus the average communication raf@s® in Fig. 7.
As expected, the estimation error increases with reduced
communication. Remarkably, a significant reduction of com-
munication can be achieved at only a mild increase in
estimation error (for exampléz®st = 0.19 and Pt = 0.65
for 6°t = 2). Fact 1 implies that the estimation error is
bounded:Pest < 5%t The upper bound is shown in red in
Fig. 7. Notice that this bound is not only guaranteed for
the average error, but for the actual error at every gtep
(P, Pr) < 6°9.

The corresponding results for the average control B5%t
versus average control communicati®f" are shown in
Fig. 8. For theseg®s'= 10 was kept constant, anif" was

control [22], and can also be observed in the communicatioraried in the range frond to 10—,

patterns here.

D. Performance-communication trade-off

V. CONCLUDING REMARKS
The proposed framework for remote robot operation with

Next, we discuss how control and estimation performanaeduced communication was demonstrated in a simulation

depend on the thresholdsst and 6", Estimation perfor-

example of a 2D robot arm, using an EKF and iLQG

mance of the remote estimation problem is measured as tag the implementations of the estimation and control al-
difference d® of the operator’s estimation to the robot'sgorithms. However, the framework is modular and other
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fixed 68t = 10 and varyingd®. Each data point was averaged over 50
simulations. The thresholéF" (shown in red) is a guaranteed upper bound[13]
on the cost.

[14]

algorithms can readily be used. Similarly, the measures el
the triggering decisions (KL-divergence for estimatiord an [16]
guadratic cost for control) are specific choices, and others
may be meaningful for different applications (cf. Remark 1)[17
Among other aspects, the simulation example demonstrates
how asymmetric communication schemes can be obtained
(communication of control policies occurs at significantly[ls]
lower rates than estimation updates).

Encouraged by the simulation results herein, we intend 1&°]
experimentally validate the proposed framework on a raboti
platform in future work. The underlying ideas for event-
based state estimation were already successfully applied [?0]
previous work [7], where they were used to stabilize the
Balancing Cube [23], a 3D multi-body inverted pendulum. [21]

Theoretical aspects interesting for future work concern
robustness to model uncertainties and network imperfmtio[22
(delays and packet drops), extensions to remote operation
of multiple robots, and establishing hard bounds on thi3]
communication rates.
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