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Abstract: An event-based state estimation approach for reducing communication in a networked control system is proposed.
Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents
over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a
desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer
design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the
distributed control system that results when the local estimates are used for feedback control. Results from numerical
simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network
communication.

1 Introduction
In almost all control systems today, data is processed and
transferred between the system's components periodically. While
periodic system design is often convenient and well understood, it
involves an inherent limitation: data is processed and transmitted at
predetermined time instants, irrespective of the current state of the
system or the information content of the data. That is, system
resources are used regardless of whether there is any need for
processing and communication or not. This becomes prohibitive
when resources are scarce, such as in networked or cyber-physical
systems, where multiple agents share a communication medium.

Owing to the limitations of traditional design methodologies for
resource-constrained problems, aperiodic or event-based strategies
have recently received a lot of attention [1, 2]. With event-based
methods, data is transmitted or processed only when certain events
indicate that an update is required, e.g. to meet some control or
estimation specification. Thus, resources are used only when
required and saved otherwise.

In this paper, a novel event-based scheme for distributed state
estimation is proposed. We consider the system shown in Fig. 1,
where multiple sensors observe a dynamic system and transmit
data to estimator agents over a common bus. Each estimator agent
shall estimate the full state of the dynamic system, e.g. for the
purpose of monitoring or control. To limit network traffic, local
event triggers on each sensor ensure that updates are sent only
when needed. The common bus ensures that transmitted data
reaches all agents in the network, which will allow for efficient

triggering decisions and the availability of full state information on
all agents. 

The proposed approach for distributed event-based estimation
emulates a classic, discrete-time state observer design up to
guaranteed bounds, but with limited communication. Emulation-
based design is one common approach in event-based control
literature (see [2]), where an event-based control system is
designed so as to emulate the behaviour of a given continuous or
periodic control system. However, to the best of the author's
knowledge, emulation-based design has not been considered for
state estimation. While the focus of this paper is on state
estimation, we also show stability of the event-based control
system resulting when local estimates are used for feedback
control.

In particular, this paper makes the following main
contributions:

i. First emulation-based design for distributed event-based state
estimation (EBSE) replicating a centralised discrete-time linear
observer.

ii. Stability proofs for the resulting distributed and switching
estimator dynamics under generic communication or
computation imperfections (bounded disturbances).

iii. Extension to distributed event-based control, where local
estimates are used for feedback.

iv. Experimental validation on an unstable networked control
system.

Fig. 1  Distributed state estimation problem. Multiple distributed sensors make observations yi of a dynamic system and communicate to estimator nodes via a
common bus network. Development of an event-based scheme allowing all estimators to estimate the full system state x, but with limited inter-agent
communication, is the objective of this paper
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Preliminary results of those herein were presented in the
conference papers [3, 4]; this paper has been completely rewritten
and new results added.

1.1 Related work

Early work on EBSE concerned problems with a single sensor and
estimator node (see [1] and references therein). Typically, the
optimal triggering strategies have time-varying thresholds for
finite-horizon problems, and constant thresholds for infinite-
horizon problems, [1, p. 340]. Since long-term behaviour (stability)
is of primary interest herein, we consider constant thresholds.

Different types of stationary triggering policies have been
suggested in the literature. With the send-on-delta (SoD) protocol
[5], transmissions are triggered based on the difference of the
current and last-transmitted measurement. Innovation-based
triggering [6] places a threshold on the measurement innovation;
i.e. the difference of the current measurement and its prediction
based on a process model. Wu et al. [7] use the same trigger, but
apply a transformation to decorrelate the innovation. Considering
the variance of the innovation instead yields variance-based
triggering [8]. Marck and Sijs [9] proposed relevant sampling,
where the relative entropy of prior and posterior state distribution
is employed as a measure of information gain. We use innovation-
based triggers herein, which have been shown to be effective for
EBSE [10].

Different estimation algorithms have been proposed for EBSE,
with particular emphasis on how to (approximately) incorporate
information contained in ‘negative’ events (instants when no data
is transmitted) [11–13]. If one ignores the extra information from
negative events in favour of a straightforward implementation, a
time-varying Kalman filter (KF) can be used (e.g., [6]). Herein, we
use the same structure as the standard KF, but with pre-computed
switching gains, thus achieving the lowest computational
complexity of all mentioned algorithms.

To the best of the author's knowledge, distributed EBSE with
multiple sensor/estimator nodes and general coupled dynamics was
first studied in [6]. While Yook et al. [14] have previously
proposed the use of state estimators for the purpose of saving
communication, they do not employ state estimation in the usual
sense. Instead of fusing model-based predictions with incoming
data, they reset parts of the state vector. Later results on distributed
EBSE include [13, 15–19]. In contrast to the scenario herein, they
consider either a centralised fusion node, or simpler SoD-type
triggers, which are less effective for estimation [10]. None of the
mentioned references treats the problem of emulating a centralised
observer design with a distributed and event-triggered
implementation.

When the event-based state estimators are connected to state-
feedback controllers (discussed in Section 5), this represents a
distributed event-based control system. Wang and Lemmon [20]
and Mazo and Tabuada [21] were among the first to discuss
distributed or decentralised event-based control. In contrast to these
works, we neither assume perfect state measurements, nor a
centralised controller as in [21], nor have a restriction on the
dynamic couplings [20], but we rely on a common bus network
supporting all-to-all communication.

1.2 Notation

The terms state observer and state estimator are used
synonymously in this paper. ℝ, ℕ, and ℕN denote real numbers,
positive integers, and the set {1, 2, …, N}, respectively. Where
convenient, vectors are expressed as tuples (v1, v2, …), where vi
may be vectors themselves, with dimension and stacking clear
from context. For a vector v and matrix A, ∥ v ∥ denotes some
vector Hölder norm [22, p. 344], and ∥ A ∥ the induced matrix
norm. For a sequence v = {v(0), v(1), …}, ∥ v ∥∞ denotes the ℓ∞

norm ∥ v ∥∞ := supk ≥ 0 ∥ v(k) ∥. For an estimate of x(k)
computed from measurement data until time ℓ ≤ k, we write
x^(k |ℓ); and use x^(k) = x^(k |k). A matrix is called stable if all its

eigenvalues have magnitude strictly less than one. Expectation is
denoted by 𝔼[ ⋅ ].

2 Problem statement: distributed state estimation
with reduced communication
We introduce the considered networked dynamic system and state
the estimation problem addressed in this paper.

2.1 Networked dynamic system

We consider the networked estimation scenario in Fig. 1. The
dynamic system is described by linear discrete-time dynamics

x(k) = Ax(k − 1) + Bu(k − 1) + v(k − 1) (1)

y(k) = Cx(k) + w(k) (2)

with sampling time Ts, state x(k) ∈ ℝn, control input u(k) ∈ ℝq,
measurement y(k) ∈ ℝp, disturbances v(k) ∈ ℝn, w(k) ∈ ℝp, and
all matrices of corresponding dimensions. We assume that (A,B) is
stabilisable and (A,C) is detectable. No specific assumptions on the
characteristics of the disturbances v(k) and w(k) are made; they can
be random variables or deterministic disturbances.

Each of the Nsen sensor agents (cf. Fig. 1) observes part of the

dynamic process through measurements yi(k) ∈ ℝpi, i ∈ ℕNsen
. The

vector y(k) thus represents the collective measurements of all Nsen
agents

y(k) = (y1(k), y2(k), …, yNsen
(k)) (3)

yi(k) = Cix(k) + wi(k) ∀ i ∈ ℕNsen (4)

with Ci ∈ ℝpi × n and wi(k) ∈ ℝpi. Agents can be heterogeneous
with different types and dimensions of measurements, and no local
observability assumption is made (i.e., (A, Ci) can be not
detectable).

Each of the Nest estimator agents (cf. Fig. 1) shall reconstruct
the full state for the purpose of, e.g. having full information at
different monitoring stations, distributed optimal decision making,
or local state-feedback control. Overall, there are N = Nsen + Nest
agents, and we use i = 1, …, Nsen to index the sensor agents, and
i = 1 + Nsen, …, Nest + Nsen for the estimator agents.

While the primary concern is the development of an event-
based approach to the distributed state estimation problem in Fig.
1, we shall also address distributed control when the local
estimates are used for feedback. For this, we consider the control
input decomposed as

u(k) = (u1(k), u2(k), …, uNest
(k)) (5)

with ui(k) ∈ ℝqi the input computed on estimator agent i + Nsen.
All agents are connected over a common-bus network; i.e. if

one agent communicates, all agents will receive the data. We
assume that the network bandwidth is such that, in the worst case,
all agents can communicate in one time step Ts, and contention is
resolved via low-level protocols. Moreover, agents are assumed to
be synchronised in time, and network communication is abstracted
as instantaneous.

 
Remark 1: The common bus is a key component of the

developed event-based approach. It will allow the agents to
compute consistent estimates and use these for effective triggering
decisions (while inconsistencies can still happen due to data loss or
delay). Wired networks with a shared bus architecture such as
Controller Area Network (CAN) or other fieldbus systems are
common in industry [23]. Recently, Ferrari et al. [24] have
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proposed a common bus concept also for multi-hop low-power
wireless networks.

2.2 Reference design

We assume that a centralised, discrete-time state estimator design is
given, which we seek to emulate with the event-based design to be
developed herein:

x^ c(k |k − 1) = Ax^ c(k − 1|k − 1) + Bu(k − 1) (6)

x^ c(k |k) = x^ c(k |k − 1) + L y(k) − C x^ c(k |k − 1) (7)

where the estimator gain L ∈ ℝn × p has been designed to achieve
desired estimation performance, and the estimator is initialised
with some x^c(0) = x^c(0 |0). For example, (6) and (7) can be a KF
representing the optimal Bayesian estimator for Gaussian noise, or
a Luenberger observer designed via pole placement to achieve a
desired dynamic response. At any rate, a reasonable observer
design will ensure stable estimation error dynamics

ϵc(k): = x(k) − x^c(k)
= (I−LC)Aϵc(k − 1)

+(I − LC)v(k − 1) − Lw(k) .
(8)

We thus assume that (I − LC)A is stable, which is always possible
since (A,C) is detectable. It follows [25, pp. 212–213] that there
exist mc > 0 and ρc ∈ (0, 1) such that

∥ ((I − LC)A)k ∥ ≤ mcρc
k . (9)

2.3 Problem statement

The main objective of this paper is an EBSE design that
approximates the reference design of Section 2.2 with guaranteed
bounds:
 
Problem 1: Develop a distributed EBSE design for the scenario in
Fig. 1, where each estimator agent (i = Nsen, …, Nsen + Nest) locally
computes an estimate x^i(k) of the state x(k), and each sensor agent
(i = 1, …, Nsen) makes individual transmit decisions for its local
measurements yi(k). The design shall emulate the centralised
estimator (6) and (7) bounding the difference ∥ x^c(k) − x^i(k) ∥, but
with reduced communication of sensor measurements.

Furthermore, we address distributed control based on the EBSE
design:

 
Problem 2: Design distributed control laws for computing

control inputs ui(k) (cf. (5)) locally from the event-based estimates
x^i(k) so as to achieve stable closed-loop dynamics (bounded x).

For state estimation in general, both the measurement signal y
and the control input u must be known (cf. (6) and (7)). For
simplicity, we first focus on the reduction of sensor measurements
and assume

 
Assumption 1: The input u is known by all agents.

This is the case, e.g. when estimating a process without control
input (i.e., u = 0), when u is an a-priori known reference signal, or
when u is broadcast periodically over the shared bus. In particular,
if the components ui(k) are computed by different agents as in
Problem 2, Assumption 1 requires the agents to exchange their
inputs over the bus at every step k. Reducing measurement
communication, but periodically exchanging inputs may be a
viable solution when there are more measurements than control
inputs (as is the case for the experiment presented in Section 6.2).

Later, in Section 5, an extension of the results is presented,
which does not require Assumption 1 and periodic exchange of
inputs by employing event-triggering protocols also for the inputs.

3 EBSE with a single sensor–estimator link
To develop the main ideas of the EBSE approach, we first consider
Problem 1 for the simpler, but relevant special case with
Nsen = Nest = 1; i.e. a single sensor transmits data over a network
link to a remote estimator (also considered in [1, 7, 9–11], for
instance). For the purpose of this section, we make the simplifying
assumption of a prefect communication link:
 
Assumption 2: Transmission from sensor to estimator is
instantaneous and no data is lost.
For a sufficiently fast network link, this may be ensured by low-
level protocols using acknowledgments and re-transmissions.
However, this assumption is made for the sake of simplicity in this
section, and omitted again in the later sections.

We propose the event-based architecture depicted in Fig. 2a.
The key idea is to replicate the remote state estimator at the sensor;
the sensor agents then knows what the estimator knows, and thus
also when the estimator is in need of new data. The State Estimator
and Event Trigger, which together form the EBSE algorithm, are
explained next. 

3.1 State estimator

Both sensor and remote agents implement the state estimator (cf.
Fig. 2a). The estimator recursively computes an estimate
x^i(k) = x^i(k |k) of the system state x(k) from the available
measurements:

x^i(k |k − 1) = Ax^i(k − 1|k − 1) + Bu(k − 1) (10)

x^i(k |k) = x^i(k |k − 1) + γ(k)L y(k) − C x^i(k |k − 1) (11)

with i = 1 for the sensor, i = 2 for the estimator, L as in (7), and
γ(k) ∈ {0, 1} denoting the sensor's decision of transmitting y(k)
(γ(k) = 1), or not (γ(k) = 0).

By Assumption 2, both estimators have the same input data. If,
in addition, they are initialised identically, both estimates are
identical, i.e. x^1(k) = x^2(k) for all k. Hence, the sensor has
knowledge about the estimator and can exploit this for the
triggering decision.

3.2 Event trigger

The sensor transmits a measurement if, and only if, the remote
estimator cannot predict the measurement accurately enough based
on its state prediction. Specifically, y(k) is transmitted when the
remote prediction y^(k) = Cx^2(k |k − 1) deviates from y(k) by more
than a tolerable threshold δest ≥ 0. Since x^1(k |k − 1) = x^2(k |k − 1),
the sensor can make this decision without requiring communication
from the remote estimator:

transmit y(k) ⇔ γ(k) = 1
⇔ ∥ y(k) − Cx^1(k |k − 1) ∥ ≥ δest . (12)

Tuning δest allows the designer to trade off the sensor's frequency
of events (and, hence, the communication rate) for estimation
performance. This choice of the trigger will be instrumental in
bounding the difference between the event-based and the
centralised estimator, as will be seen in the subsequent stability
analysis. The trigger is also called innovation-based trigger and
was previously proposed in different contexts in [6, 7, 14]. The
innovation trigger (12) can also be realised without the local state
estimator on the sensor by periodically communicating estimates
from the remote estimator to the sensor. However, the proposed
architecture avoids this additional communication.

3.3 Stability analysis

The estimator update (10) and (11) and the triggering rule (12)
together constitute the proposed event-based state estimator. The
estimator (10) and (11) is a switching observer, whose switching
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modes are governed by the event trigger (12). For arbitrary
switching, stability of the switching observer is not implied by
stability of the centralised design (see, e.g., [26]). Hence, proving
stability is an essential, non-trivial requirement for the event-based
design.

3.3.1 Difference to centralised estimator: Addressing Problem
1, we first prove a bounded difference to the centralised reference
estimator x^c(k). Using (6), (7), (10), and (11), the difference
ei(k) = x^c(k) − x^i(k) can be written as

ei(k) = Aei(k − 1) + L y(k) − Cx^c(k |k − 1)
−γ(k)L y(k) − Cx^i(k |k − 1)

= (I − LC)Aei(k − 1) + (1 − γ(k))
× L y(k) − Cx^i(k |k − 1)

(13)

where the last equation was obtained by adding and subtracting
L(y(k) − Cx^i(k |k − 1)). The error ei(k) is governed by the stable
centralised estimator dynamics (I − LC)A with an extra input term,
which is bounded by the choice of the event-trigger (12): for
γ(k) = 0, L(y(k) − Cx^i(k |k − 1)) is bounded by (12), and for
γ(k) = 1, the extra term vanishes. We thus have the following
result:
 
Theorem 1: Let Assumptions 1 and 2 be satisfied, (I − LC)A be
stable, and x^1(0) = x^2(0) = x0 for some x0 ∈ ℝn. Then, the
difference ei(k) between the centralised estimator and the EBSE
(10)–(12) is bounded by

∥ ei ∥∞ ≤ mc ∥ ei(0) ∥ +
mc

1 − ρc
∥ L ∥ δest =: ei

max . (14)

 
Proof: From the assumptions, it follows that x^1(k) = x^2(k) and
x^1(k |k − 1) = x^2(k |k − 1). From the previous argument, we have

∥ (1 − γ(k))L y(k) − Cx^i(k |k − 1) ∥ ≤ ∥ L ∥ δest . (15)

The bound (14) then follows from [25, p. 218, Theorem 75] and
exponential stability of ei(k) = (I − LC)Aei(k − 1) [cf. (9)]. □

The first term in (14), mc ∥ ei(0) ∥, is due to possibly different
initial conditions between the EBSE and the centralised estimator,
and mc ∥ L ∥ δest/(1 − ρc) represents the asymptotic bound.
Choosing δest small enough, ei(k) can hence be made arbitrarily
small as k → ∞, and, for δest = 0, the performance of the
centralised estimator is recovered.

The bound (14) holds irrespective of the nature of the
disturbances v and w in (1), (2) (no assumption on v, w is made in
Theorem 1). In particular, it also holds for the case of unbounded
disturbances such as Gaussian noise.

3.3.2 Estimation error: The actual estimation error ϵi of agent i is

ϵi(k) := x(k) − x^i(k)
= ϵc(k) + ei(k) . (16)

Theorem 1 can be used to deduce properties of the estimation error
ϵi from properties of the centralised estimator. We exemplify this
for the case of bounded, as well as stochastic disturbances v and w.
 
Corollary 1: Let ∥ v ∥∞ ≤ vmax, ∥ w ∥∞ ≤ wmax, ∥ ei ∥∞ ≤ ei

max

be bounded, and (I − LC)A be stable. Then, the event-based
estimation error (16) is bounded by

∥ ϵi ∥∞ ≤ ϵc
max + ei

max (17)

with

ϵc
max := mc ∥ ϵc(0) ∥ +

mc
1 − ρc

( ∥ I − LC ∥ vmax + ∥ L ∥ wmax) .

Fig. 2  Proposed EBSE architectures. Dashed arrows indicate event-based communication, while solid ones indicate periodic communication
(a) Single sensor/estimator case: sensor agent implements a copy of the remote State Estimator to trigger a data transmission (Event Trigger) whenever an update is needed at the
remote agent, (b) Multiple sensor/estimator case: each agent implements a copy of the State Estimator for making transmit decisions (sensors) or having full state information
available (estimators). The common bus supports data exchange between all agents; 𝒴(k) denotes the set of measurements communicated at time k. Disturbances di model

differences in the agents' estimates, e.g. from imperfect communication.
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Proof: The bound ϵc

max on the centralised estimation error ϵc(k)
follows directly from (8), exponential stability (9), and [25, p. 218,
Theorem 75]. The result (17) is then immediate from (16).   □
 
Corollary 2: Let v, w, x(0) be random variables with 𝔼[v(k)] = 0,
𝔼[w(k)] = 0, 𝔼[x(0)] = x0, and the centralised estimator be
initialised with x^c(0) = x0. Let ∥ ei ∥∞ ≤ ei

max be bounded, and
(I − LC)A be stable. Then, the expected event-based estimation
error (16) is bounded by

∥ 𝔼[ϵi(k)] ∥ ≤ ei
max ∀k . (18)

 
Proof: From (8), it follows 𝔼[ϵc(k)] = (I − LC)A𝔼[ϵc(k − 1)], and
thus 𝔼[ϵc(k)] = 0 by recursion from 𝔼[ϵc(0)] = 𝔼[x(0)] − x0 = 0.
Therefore

∥ 𝔼[ϵi(k)] ∥ = ∥ 𝔼[ei(k)] ∥ ≤ 𝔼[ ∥ ei(k) ∥ ] ≤ ei
max (19)

where the first inequality follows from Jensen's inequality, and the
last from ∥ ei(k) ∥ ≤ ei

max.   □

4 EBSE with multiple agents
We extend the ideas of the previous section to the general multi-
agent case in Problem 1. While the assumption of perfect
communication (Assumption 2) may possibly be realisable for few
agents, it becomes unrealistic as the number of agents increases.
Thus, we generalise the stability analysis to the case where agents'
estimates can differ.

4.1 Architecture

We propose the distributed event-based architecture depicted in
Fig. 2b for the multi-agent problem. Adopting the key idea of the
single agent case (cf. Fig. 2a), each agent implements a copy of the
state estimator for making transmit decisions. The common bus
network ensures that, if a measurement is transmitted, it is
broadcast to all other units. For the estimators to be consistent, the
sensor agents also listen to the measurement data 𝒴(k) broadcast
by other units.

The proposed EBSE scheme is distributed in the sense that data
from distributed sensors is required for stable state estimation, and
that transmit decisions are made locally by each agent.

4.2 Event trigger

In analogy to the single agent case (12), each agent i, i ∈ ℕNsen
,

uses the following event triggering rule:

transmit yi(k) ⇔ ∥ yi(k) − Cix
^
i(k |k − 1) ∥ ≥ δi

est . (20)

The prediction y^i(k) = Cix
^
i(k |k − 1) computed by agent i is

representative also for all other agents' predictions of the same
measurement, y^i

j(k) = Cix
^

j(k |k − 1), as long as
x^i(k |k − 1) ≃ x^ j(k |k − 1), which is to be established in the stability
analysis below. Being able to approximately represent the other
agents' knowledge is the basis for making effective transmit
decisions in the proposed approach.

For later reference, we introduce δest := (δ1
est, …, δNsen

est ) and the
index sets of transmitting and not-transmitting agents:

I(k) := {i ∈ ℕNsen
| ∥ yi(k) − Cix

^
i(k |k − 1) ∥ ≥ δi

est} (21)

Ic(k): = {i ∈ ℕNsen
| ∥ yi(k) − Cix

^
i(k |k − 1) ∥ < δi

est}
= ℕNsen

∖ I(k) . (22)

4.3 State estimator

Extending the event-based estimator (10) and (11) to the multi-
sensor case, we propose the following estimator update for all
agents (i ∈ ℕN):

x^i(k |k − 1) = Ax^i(k − 1|k − 1) + Bu(k − 1) (23)

x^i(k |k) = x^i(k |k − 1) + ∑
ℓ ∈ I(k)

Lℓ yℓ(k) − Cℓx^i(k |k − 1) (24)

where Lℓ ∈ ℝn × pℓ is the submatrix of the centralised gain
L = [L1, L2, …, LNsen

] corresponding to yℓ. Rewriting (7) as

x^c(k |k) = x^c(k |k − 1)
+ ∑

ℓ ∈ ℕNsen

Lℓ yℓ(k) − Cℓx^c(k |k − 1) (25)

we see that (24) is the same as the centralised update, but only
updating with a subset I(k) ⊂ ℕNsen

 of all measurements. If, at time
k, no measurement is transmitted (i.e., I(k) = ∅), then the
summation in (24) vanishes; i.e. x^i(k |k) = x^i(k |k − 1).

To account for differences in any two agents' estimates, e.g.
from unequal initialisation, different computation accuracy, or
imperfect communication, we introduce a generic disturbance
signal di acting on each estimator (cf. Fig. 2b). For the stability
analysis, we thus replace (24) with

x^i(k |k) = x^i(k |k − 1)
+ ∑

ℓ ∈ I(k)
Lℓ yℓ(k) − Cℓx^i(k |k − 1) + di(k) . (26)

The disturbances are assumed to be bounded:
 
Assumption 3: For all i ∈ ℕN, ∥ di ∥∞ ≤ di

max.
This assumption is realistic, when di represent imperfect

initialisation or different computation accuracy, for example. Even
though the assumption may not hold for modelling packet drops in
general, the developed method was found to be effective also for
this case in the example of Section 6.1.

4.4 Stability analysis

We discuss stability of the distributed EBSE system given by the
process (1) and (4), the (disturbed) estimators (23) and (26), and
the triggering rule (20). We first consider the difference between
the centralised and event-based estimate, ei(k) = x^c(k) − x^i(k). By
straightforward manipulation using (6), (23), (25), and (26), we
obtain

ei(k) = Aei(k − 1)
+ ∑

ℓ ∈ ℕNsen

Lℓ yℓ(k) − Cℓx^c(k |k − 1)

− ∑
ℓ ∈ I(k)

Lℓ yℓ(k) − Cℓx^i(k |k − 1)

∑ℓ ∈ ℕNsen
Lℓ( ⋯ ) − ∑

ℓ ∈ Ic(k)
Lℓ( ⋯ )

− di(k)

= (I − LC)Aei(k − 1)
+ ∑

ℓ ∈ Ic(k)
Lℓ yℓ(k) − Cℓx^i(k |k − 1) − di(k)

(27)

= (I − LC)Aei(k − 1)
+ ∑

ℓ ∈ Ic(k)
Lℓ yℓ(k) − Cℓx^ℓ(k |k − 1)

−di(k) − ∑
j ∈ Ic(k)

L jC jAei j(k − 1)
(28)
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where ei j(k) := x^i(k) − x^ j(k) is the inter-agent error, and we used
x^i(k |k − 1) − x^ℓ(k |k − 1) = Aeiℓ(k − 1). The error dynamics (28)
are governed by stable dynamics ei(k) = (I − LC)Aei(k − 1) with
three input terms. The term ∑ℓ ∈ Ic(k) Lℓ(yℓ(k) − Cℓx^ℓ(k |k − 1)) is
analogous to the last term in (13) and bounded by the event
triggering (20) (cf. (22)). The last two terms are due to the
disturbance di and resulting inter-agent differences ei j. To bound ei,
ei j must also be bounded, which is established next.

4.4.1 Inter-agent error: The inter-agent error can be written as

ei j(k) = x^i(k) − x^ j(k) = Aei j(k − 1)
+∑ℓ ∈ I(k)

Lℓ yℓ(k) − Cℓx^i(k |k − 1) + di(k)

−∑ℓ ∈ I(k)
Lℓ yℓ(k) − Cℓx^ j(k |k − 1) − d j(k)

= A
~

I(k) ei j(k − 1) + di(k) − d j(k)

(29)

where A
~

J is defined for some subset J ⊆ ℕNsen
 by

A
~

J := (I − ∑
ℓ ∈ J

LℓCℓ)A . (30)

Hence, the inter-agent error ei j(k) is governed by the time-varying
dynamics ei j(k) = A

~
I(k)ei j(k − 1). Unfortunately, one cannot, in

general, infer stability of the inter-agent error (and thus the event-
based estimation error (28)) from stability of the centralised design.
A counterexample is presented in [4].

A sufficiency result for stability of the inter-agent error can be
obtained by considering the dynamics (29) under arbitrary
switching; i.e. with A

~
J for all subsets J ⊆ ℕNsen

. The following
result is adapted from [27, Lemma 3.1].

 
Lemma 1: Let Assumption 3 hold, and let the matrix inequality

A
~

J
TPA

~
J − P < 0 (31)

be satisfied for some positive definite P ∈ ℝn × n and for all subsets
J ⊆ ℕNsen

. Then, for given initial errors ei j(0) (i, j ∈ ℕN), there

exists emax ∈ ℝ, emax ≥ 0, such that

∥ ei j ∥∞ ≤ emax, for all i, j ∈ ℕN (32)

and the Euclidean norm ‖ . ‖ .
 
Proof: Under (31), the error dynamics (29) are input-to-state

stable (ISS) following the proof of [27, Lemma 3.1] (Acl(J)
replaced with A

~
J). With Assumption 3, ISS guarantees

boundedness of the inter-agent error ei j and thus the existence of
ei j

max ≥ 0 (possibly dependent on the initial error ei j(0)) such that

∥ ei j ∥∞ ≤ ei j
max . (33)

Finally, (32) is obtained by taking the maximum over all
ei j

max.   □
The stability test is conservative because the event trigger (20)

will generally not permit arbitrary switching. Since J ⊆ ℕNsen
 also

includes the empty set (i.e., A
~

∅ = A), the test can only be used for
open-loop stable dynamics (1). In Section 4.4.3, we present an
alternative approach to obtained bounded ei j for arbitrary systems.

4.4.2 Difference to centralised estimator: With the preceding
lemma, we can now establish boundedness of the estimation error
(28).
 

Theorem 2: Let Assumptions 1 and 3 and the conditions of Lemma
1 be satisfied, and let (I − LC)A be stable. Then, the difference
ei(k) between the centralised estimator and the EBSE (20), (23),
(26) is bounded by

∥ ei ∥∞ ≤ mc ∥ ei(0) ∥ +
mc

1 − ρc

× ∥ L ∥ ∥ δest ∥ + di
max + m̄Nsene

max =: ei
max

(34)

with mc, ρc as in (9), and m̄ := max j ∈ ℕNsen
∥ L jC jA ∥.

 
Proof: We can establish the following bounds (for all k):

∑
ℓ ∈ Ic(k)

Lℓ yℓ(k) − Cℓx^ℓ(k |k − 1) ≤
(22)

∥ L ∥ ∥ δest ∥ (35)

∥ di(k) ∥ ≤
Ass . 3

di
max (36)

∑
j ∈ Ic(k)

L jC jAei j(k − 1)

≤ ∑
j ∈ Ic(k)

∥ L jC jA ∥ ∥ ei j(k − 1) ∥ ≤
Lemma 1

m̄Nsene
max .

(37)

The result (34) then follows from (28), stability of (I − LC)A, and
[25, p. 218, Thm. 75].   □

4.4.3 Synchronous estimator resets: We present a
straightforward extension of the event-based communication
scheme, which guarantees stability even if the inter-agent error
dynamics (29) cannot be shown to be stable (e.g., if Lemma 1 does
not apply).

Since the inter-agent error ei j(k) is the difference between the
state estimates by agents i and j, we can make it zero by resetting
the two agents' state estimates to the same value, e.g. their average.
Therefore, a straightforward way to guarantee bounded inter-agent
errors is to periodically reset all agents' estimates to their joint
average. Clearly, this strategy increases the communication load on
the network. If, however, the disturbances di are small or only
occur rarely, the required resetting period can typically be large
relative to the underlying sampling time Ts.

We assume that the resetting happens after all agents have made
their estimator updates (26). Let x^i(k − ) and x^i(k + ) denote agent
i's estimate at time k before and after resetting, and let K ∈ ℕ be
the fixed resetting period. Each agent i implements the following
synchronous averaging:

If k a multiple of K : transmit x^i(k − );
receive x^ j(k − ), j ∈ ℕN ∖ {i};

set x^i(k + ) = ∑
j = 1

N
x^ j(k − ) .

(38)

We assume that the network capacity is such that the mutual
exchange of the estimates can happen in one time step, and no data
is lost in the transfer. In other scenarios, one could take several
time steps to exchange all estimates, at the expense of a delayed
reset. The synchronous averaging period K can be chosen from
simulations assuming a model for the inter-agent disturbances di
(e.g., packet drops).

We have the following stability result for EBSE with
synchronous averaging (38).

 
Theorem 3: Let Assumptions 1 and 3 be satisfied and (I − LC)A

be stable. Then, the difference ei(k) between the centralised
estimator and the EBSE with synchronous averaging given by (20),
(23), (26), and (38) is bounded.
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Proof: Since the agent error (28) is affected by the resetting
(38), we first rewrite ei(k) in terms of the average estimate
x̄(k) := avg(x^i(k)) := 1

N ∑i = 1
N x^i(k). Defining ē(k) := x^c(k) − x̄(k) and

ēi(k) := x̄(k) − x^i(k), we have ei(k) = ē(k) + ēi(k) and will establish
the claim by showing boundedness of ēi(k) and ē(k) separately.

For the average estimate x̄(k), we obtain from (23), (26),

x̄(k |k − 1) = Ax̄(k − 1) + Bu(k − 1)
x̄(k) = x̄(k |k − 1)

+ ∑
ℓ ∈ I(k)

Lℓ yℓ(k) − Cℓx̄(k |k − 1) + d̄(k)

where x̄(k |k − 1) := avg(x^i(k |k − 1)) and d̄(k) := avg(di(k)). The
dynamics of the error ēi(k) are described by

ēi(k) = A
~

I(k)ēi(k − 1) + d̄(k) − di(k) (39)

ēi(k + ) = 0, for k = κK with some κ ∈ ℕ (40)

where (39) is obtained by direct calculation analogous to (29), and
(40) follows from (38). Since d̄(k), di(k), and A

~
I(k) are all bounded,

boundedness of ēi for all i ∈ ℕN follows.
Since ē(k) = avgi(ei(k)), we obtain from (28)

ē(k) = (I − LC)Aē(k − 1)
+ ∑

ℓ ∈ Ic(k)
Lℓ yℓ(k) − Cℓx^ℓ(k |k − 1) − d̄(k)

− ∑
j ∈ Ic(k)

L jC jAē j(k − 1)
(41)

where we used avgi(ei j(k)) = avgi(x^i(k) − x^ j(k))
= x̄(k) − x^ j(k) = ē j(k). Note that (41) fully describes the evolution
of ē(k). In particular, the resetting (38) does not affect ē(k) because,
at k = κK, it holds

ē(k + ) = x^c(k) − 1
N ∑

j = 1

N
x^ j(k + )

= x^c(k) − 1
N ∑

j = 1

N 1
N ∑

ℓ = 1

N
x^ℓ(k − )

= x^c(k) − 1
N ∑

ℓ = 1

N
x^ℓ(k − ) = ē(k − ) .

(42)

All input terms in (41) are bounded: d̄ by Assumption 3,
∑ℓ ∈ Ic(k) Lℓ(yℓ(k) − Cℓx^ℓ(k |k − 1)) by (22), and ē j by the previous
argument. The claim then follows from stability of
(I − LC)A.   □

4.4.4 Estimation error: By means of (16) with Theorem 2 or
Theorem 3, properties about the agent's estimation error
ϵi(k) = x(k) − x^i(k) can be derived given properties of the
disturbances v, w, and the centralised estimator. For example,
Corollaries 1 and 2 apply analogously also for the multi-agent case.

5 Distributed control
In this section, we address Problem 2; i.e. the scenario where the
local estimates x^i on the Nest estimators are used for feedback
control.

Recall the decomposition (5) of the control input, where ui(k) is
the input computed on estimator agent i + Nsen. Assume a
centralised state-feedback design is given

u(k) = F x(k) (43)

with controller gain F ∈ ℝq × n such that A + BF is stable. We
propose the distributed state-feedback control law

ui(k) = Fi x^i + Nsen
(k), i ∈ ℕNest (44)

where Fi ∈ ℝqi × n is the part of the gain matrix F in (43)
corresponding to the local input ui. Same as for the emulation-
based estimator design in the previous sections, the feedback gains
do not need to be specifically designed, but can simply be taken
from the centralised design (43).

5.1 Closed-loop stability analysis

Using (16) and (44), the state equation (1) can be rewritten as

x(k) = (A + BF)x(k − 1)
− ∑

i ∈ ℕNest

BiFi ϵi + Nsen
(k − 1) + v(k − 1) (45)

where ϵi + Nsen
(k − 1) are the estimation errors of the estimator

agents (cf. Section 4.4.4). Closed-loop stability can then be
deduced leveraging the results of Section 4.
 
Theorem 4: Let the assumptions of either Theorem 2 or Theorem 3
be satisfied, A + BF be stable, and v and w bounded. Then, the
state of the closed-loop control system given by (1), (2), (20), (23),
(26), (44), and (possibly) (38) is bounded.
 
Proof: Since (I − LC)A is stable and v, w bounded, it follows from
(8) that the estimation error ϵc(k) of the centralised observer is also
bounded. Thus, (16) and Theorem 2 or Theorem 3 imply that all
ϵi, i ∈ ℕN, are bounded. Hence, it follows from (45), stability of
A + BF, and bounded v that x is also bounded.   □

Satisfying Assumption 1 for the above result requires the
periodic communication of all inputs over the bus. While this
increases the network load, it can be a viable option if the number
of inputs is comparably small. Next, we briefly present an
alternative scheme, where the communication of inputs is reduced
also by means of event-based protocols.

5.2 Event-based communication of inputs

Each estimator agent computes ui(k) according to (44) and
broadcasts an update to the other agents whenever there has been a
significant change:

transmit ui(k) ⇔ ∥ ui(k) − ui, last(k) ∥ ≥ δi
ctrl (46)

where δi
ctrl ≥ 0 is a tuning parameter, and ui, last(k) is the last input

that was broadcast by agent i.
Each agent i maintains an estimate u^i(k) ∈ ℝq of the complete

input vector u(k); agent i's estimate of agent j's input is

u^ j
i(k) =

u j(k) if (46) triggered
u^ j

i(k − 1) otherwise . (47)

The agent then uses u^i(k − 1) = (u^1
i(k − 1), u^2

i(k − 1), …, u^N(k − 1))
instead of the true input u(k − 1) for the estimator update (23).
Since the error u~i(k) := u(k) − u^i(k) from making this approximate
update is bounded by the event trigger (46), the stability results
presented in Section 4 can be extended to this case. The details are
omitted, but can be found in [28].

6 Experiments
To illustrate the proposed approach for EBSE, we present
numerical simulations of a benchmark problem [29] and
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summarise experimental results from [3]. Both are examples of the
multi-agent case where local estimates are used for control.

6.1 Simulation of a thermo-fluid benchmark process

We consider distributed event-based control of a thermo-fluid
process, which has been proposed as a benchmark problem in [29,
30]. Matlab files to run the simulation example are provided as
supplementary material (http://is.tue.mpg.de/publications/tr17).

The process has two tanks containing fluids, whose level and
temperature are to be regulated by controlling the tanks' inflows, as
well as heating and cooling units. Both tanks are subject to step-
like disturbances, and their dynamics are coupled through cross-
flows between the tanks. Each tank is associated with a control
agent responsible for computing commands to the respective
actuators. Each agent can sense the temperature and level of its
tank. For details on the process, refer to [29, 30].

6.1.1 System description: The discrete-time linear model (1) and
(2) is obtained by zero-order hold discretisation with Ts = 0.2 s of
the continuous-time model given in [29, Section 5.8]. The process

dynamics are stable. The states and inputs of the system are
summarised in Table 1. Noisy state measurements

y(k) = x(k) + w(k)

are available, where w(k) is uniformly distributed. The numerical
parameters of the model are available in the supplementary files. 

Similar to the distributed architecture in [30], we consider two
agents (one for each tank) exchanging data with each other over a
network link, see Fig. 3 (with N = 2) and Table 2 for inputs/output
definitions. Each agents combines the functions of sensing,
estimation, and control. To save computational resources, an agent
runs a single estimator and uses it for both event triggering (20)
and feedback control (44) (see [6] for an alternative architecture
with two estimators). 

To study the effect of imperfect communication, we simulate
random packet drops such that a transmitted measurement yi(k) is
lost with probability 0.05, independent of previous drops. Packet
drops can be represented by the disturbance di(k) in (26) as
follows: if yℓ(k), ℓ ∈ I(k) is a measurement not received at agent i,
then di(k) = − Lℓ(yℓ(k) − Cℓx^i(k |k − 1)) accounts for the lost
packet. For simplicity, we assume that communicated inputs are
never lost.

6.1.2 Event-based design: Each agent implements the event
triggers (20) and (46), the estimator (23) and (24), and the
distributed control (44). Triggering decisions are made individually
for the two sensors of each agent, but jointly for both inputs (cf.
Table 2).

For the design of the centralised observer (6), (7), we chose
L = diag(0.1, 0.05, 0.1, 0.05) as observer gain, leading to stable
(I − LC)A. For this design, the inter-agent error dynamics (29) are
also stable: by direct calculation, one can verify that (31) is
satisfied with P = diag(500, 1, 500, 1) for all subsets
J ⊆ {1, 2, 3, 4} (cf. supplementary material). Lemma 1 thus
guarantees that (29) is stable, and synchronous resetting (38) not
necessary.

The state-feedback gain F is obtained from a linear quadratic
regulator (LQR) design, which involves full couplings between all
states in contrast to the decentralised design in [30]. The triggering
thresholds are set to δ11

est = δ21
est = 0.01 m, δ12

est = δ22
est = 0.2 K, and

δ1
ctrl = δ2

ctrl = 0.02.

6.1.3 Simulation results: The state trajectories of a 2000 s
simulation run under event-based communication are shown in Fig.
4. Step-wise disturbances v (grey shaded areas) with comparable
magnitudes as in [30] cause the states to deviate from zero.
Especially at times when disturbances are active, the event-based
estimate is slightly inferior to the centralised one, as is expected
due to the reduced number of measurements. 

The average communication rates for event-based input and
sensor transmissions are given in Fig. 5. Clearly, communication
rates increase in the periods where the disturbances are active,
albeit not the same for all sensors and inputs. At times when there
is no disturbance, communication rates are very low. 

Fig. 6 shows the inter-agent error e12. Jumps in the error signals
are caused by dropped packets, with decay afterward due to stable
dynamics (29). 

6.2 Experiments on the Balancing Cube

The proposed emulation-based approach to event-based estimation
was applied in [3] for stabilising the Balancing Cube [31] (see Fig.
7). In this section, we summarise the main results from the
experimental study reported in [3]. For details, we refer to these
citations. 

6.2.1 System description: The cube is stabilised through six
rotating arms on its rigid structure (see Fig. 7). Each arm
constitutes a control agent equipped with sensors (angle encoder
and rate gyroscopes), a DC motor, and a computer. The computers

Table 1 States and inputs of the thermo-fluid process
States/Inputs Unit
x1(k) level tank 1 m
x2(k) temperature tank 1 K
x3(k) level tank 2 m
x4(k) temperature tank 2 K
u11(k) inflow tank 1 1 (normalised)
u12(k) cooling tank 1 1 (normalised)
u21(k) inflow tank 2 1 (normalised)
u22(k) heating tank 2 1 (normalised)
 

Fig. 3  Distributed, event-based control architecture in the experiments of
Section 6. N spatially distributed agents observe and control a dynamic
system and exchange data with each other via a common bus. Compared to
Fig. 2b, the agents combine the functions of sensing/triggering, estimation,
and additionally feedback control. The State Estimator serves both for
making the triggering decision and for feedback control

 

Table 2 Agents in the thermo-fluid example. Agent 1
measures y1 = (y11, y12) (level and temperature) of its tank and
is responsible for controlling u1 = (u11, u12) (inflow and cooling);
and Agent 2 accordingly
Agent # 1 2
actuators u1 = (u11, u12) u2 = (u21, u22)
sensors y1 = (y11, y12) y2 = (y21, y22)
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are connected over a CAN bus, which supports the exchange of
sensor data between all agents (including the worst case of all
agents communicating within one sampling time Ts = 1/60 s).
Each agent thus combines the functions sensing, triggering,
estimation, and control as shown in Fig. 3 (N = 6).

6.2.2 Event-based design: A model (1) and (2) representing
linearised dynamics about the equilibrium configuration shown in
Fig. 7 is used for designing the centralised observer (6) and (7) (as
a steady-state KF) and the controller (43) (LQR). Each agent
makes individual triggering decisions for its angle sensor and for

its rate gyroscope with thresholds δang = 0.008 rad and
δgyro = 0.004 rad/s, respectively.

In the experiments, control inputs ui were communicated
periodically between all agents. Synchronous resetting (38) was not
applied, even though stability of the inter-agent error (29) cannot
be shown using Lemma 1 because of unstable open-loop dynamics.
Despite the absence of a formal proof, the system was found to be
stable in balancing experiments.

6.2.3 Experimental results: Fig. 8 shows typical communication
rates for some sensors during balancing. The desired behaviour of
event-based communication is well visible: feedback happens only
when necessary (e.g., instability or disturbances). Overall, the

Fig. 4  State trajectories for the thermo-fluid simulation example. Black
(dashed): the actual states x; black (solid): event-based estimate x̂1 by
Agent 1; grey: centralised estimate x̂c. Centralised estimate is shown for
comparison and not available on any of the agents. Grey shaded areas
indicate periods where step-wise process disturbances are active

 

Fig. 5  Event-based communication rates for the thermo-fluid simulation
example: communication of level measurements y11 and y21 in black
(dotted), for temperature measurements y12 and y22 in black (solid), and for
the inputs u1 and u2 in grey. Communication rates are computed as the
moving average over 100 steps (0.0 meaning no communication and 1.0 full
communication)

 

Fig. 6  Inter-agent error e12 for the thermo-fluid example. Jumps in error
are caused by packet drops, and the decay afterward is due to stable inter-
agent dynamics (29) as ensured by Lemma 1

 

Fig. 7  The Balancing Cube [31] can balance autonomously one any one
of its corners or edges. Six rotating arms, which constitute the control
agents, collaboratively keep the system in balance. Here, the cube is shown
while balancing on an edge, which was the configuration used for the
experiments in [3]. Photo: Carolina Flores, IDSC, ETH Zurich. © 2012
IEEE. Reprinted, with permission, from [31]
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network traffic could be reduced by about 78% at only a mild
decrease in estimation performance. 

7 Concluding remarks
Simplicity of design and implementation are key features of the
emulation-based approach to EBSE developed herein. The
approach directly builds on a classic centralised, linear, discrete-
time state observer design. Essentially, only the even triggers (20)
and (46), and (for some problems) synchronous resetting (38) must
be added. The estimator structure, as well as the transmitted
quantities remain unchanged, and no redesign of gains is necessary.
The performance of the periodic design can be recovered by
choosing small enough triggering thresholds, which simplifies
tuning in practise. Thus, implementation of the event-based system
requires minimal extra effort, and virtually no additional design
knowledge.

With the proposed event-based method, the average
communication load in a networked control system can be
significantly reduced, as demonstrated in the simulations and
experiment in this paper.
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Fig. 8  Experimental communication rates on the Balancing Cube
(reproduced from [3]). Communication rates (between 0 and 1) are
computed as moving average over the last 100 time steps. Rate gyroscopes
generally transmit at higher rates than the angle sensors since they observe
the unstable mode of the system. Angle measurements can be predicted well
from the process model; thus only little communication is necessary (e.g.,
Agent 4 does not transmit over 30 s). Caused by an external disturbance
applied at 10 s on Agent 1 (pushing the arm), the communication rate of
Agent 1 goes up temporarily
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