
MOBILE MICROROBOTICS



Intelligent Robotics and Autonomous Agents

Edited by Ronald C. Arkin

A complete list of the books in the Intelligent Robotics and Autonomous Agents series

appears at the back of this book.



MOBILE MICROROBOTICS

Metin Sitti

The MIT Press

Cambridge, Massachusetts

London, England



c© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic
or mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Times Roman by the author. Printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data:

Names: Sitti, Metin, author.
Title: Mobile microrobotics / Metin Sitti.
Description: Cambridge, MA : MIT Press, [2017] | Series: Intelligent robotics and autonomous
agents | Includes bibliographical references and index.
Identifiers: LCCN 2016047358 | ISBN 9780262036436 (hardcover : alk. paper)
Subjects: LCSH: Microrobots. | Mobile robots.
Classification: LCC TJ211.36 .S57 2017 | DDC 629.8/932 – dc23
LC record available at https://lccn.loc.gov/2016047358

10 9 8 7 6 5 4 3 2 1



To the beautiful memories of my beloved sister, brain surgeon, İlkay Sitti
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1 Introduction

Significant progress in micro/nanoscale science and technology in last two

decades has created increasing demand and hope for new microsystems for

high-impact applications in healthcare, biotechnology, manufacturing, and

mobile sensor networks. Such microsystems should be able to access small

enclosed spaces such as inside the human body and microfluidic devices non-

invasively and manipulate or interact with micro/nanoscale entities directly.

Because human or macroscale robot sensing, precision, and size are not capa-

ble of achieving such desired characteristics, microrobotics has emerged as

a new robotics field to extend our interaction and exploration capabilities to

sub-millimeter scales. Moreover, mobile microrobots could be manufactured

cost-effectively in large numbers, where a dense network of microrobots could

enable new massively parallel, self-organizing, reconfigurable, swarm, or dis-

tributed systems. For these purposes, many groups have proposed various

untethered mobile microrobotic systems in the past decade. Such untethered

microrobots could enable many new applications, such as minimally invasive

diagnosis and treatment inside the human body, biological studies or bioengi-

neering applications inside microfluidic devices, desktop micromanufacturing,

and mobile sensor networks for environmental and health monitoring.

1.1 Definition of Different Size Scale Miniature Mobile Robots

A typical macroscale mobile robot is a self-contained, untethered, and repro-

grammable machine that can perceive, move, and learn in a given environment

to realize a given task. But when can a mobile robot be called a mobile micro-

robot? Unfortunately, there is not yet a standardized definition of the term

microrobot. Let us attempt to create a definition to classify different minia-

ture robots in the literature. First, let us define two unique characteristics of a

mobile microrobot [65]:

• Overall size: A mobile microrobot must be able to access small (less than 1

mm in all dimensions) spaces directly with minimal invasion, which entails

untethered operation and all dimensions of the mobile robot being smaller

than 1 mm.

• Scaling effects on robot mechanics: Locomotion mechanics and physical

interactions of a mobile microrobot in a given environment are dominated

by microscale physical forces and effects. Thus, volume-based forces such
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as inertial forces, gravity, and buoyancy become almost negligible or com-

parable to surface area- and perimeter-based forces such as viscous forces,

drag, friction, surface tension, and adhesion.

To incorporate these unique characteristics, we will define a mobile micro-

robot as a mobile robotic system where its untethered mobile component has
all dimensions less than 1 mm and larger than 1 μm and its mechanics is
dominated by microscale physical forces and effects. Thus, for microrobots,

bulk forces are negligible or comparable to surface area- and perimeter-related

forces. Also, viscous forces are much larger than inertial forces for a swimming

microrobot, resulting in Reynolds number, which is the ratio of the inertial to

viscous forces, less than 1. At the micron scale, fluid flows are mostly steady,

and we are mostly in the Stokes flow regime. Brownian (stochastic) motion

of microrobots in water resulting from their random collision with the water

molecules at room temperature is negligible. Moreover, microrobots are made

of sub-millimeter scale components, such as microactuators, microsensors, and

micromechanisms, and are fabricated by microfabrication methods, which are

different from conventional macroscale machining techniques. Finally, they

have specific functions for a given task such as manipulation, sensing, cargo

transport and delivery, and local heating.

There are currently two main approaches to designing, building, and control-

ling mobile microrobots in the literature depending on the given application:

• On-board approach: Similar to a typical macroscale mobile robot, the

microrobot is self-contained and untethered, with all robot dimensions being

less than 1 mm. Here, all on-board robot components, such as mechanisms,

tools, actuators, sensors, power source, electronics, computation, and wire-

less communication, must be miniaturized down to few micrometers scale.

• Off-board approach: The mobile, untethered component of the microrobotic

system is remotely (off-board) actuated, sensed, controlled, or powered and

has all dimensions less than 1 mm while the overall system size could be

very large.

The on-board approach is technically much more difficult to realize due to

miniaturization challenges of all on-board components. However, it enables

mobile microrobots navigating in large workspaces, e.g., in outdoors, which

is required for mobile sensor network applications for environment monitor-

ing and exploration. On the other hand, the off-board approach is easier to
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Table 1.1
Definition of different size scale miniature mobile robots (Reynolds number is the ratio of inertial
forces to viscous forces, which dictates the fluid dynamics regime.)

Mobile Robot Type Overall Size Dominant Forces Acting on Robot
Millirobots 1 mm to 10 cm Macroscale volume-related forces;

Reynolds number �1

Microrobots 1 μm to 1 mm Microscale surface area- or perimeter-related forces;

Negligible Brownian motion;

Reynolds number ∼1 or 	1

Nanorobots < 1 μm Nanoscale physical and chemical forces;

Non-negligible stochastic Brownian motion

implement due to fewer miniaturization challenges when operating in con-

fined workspaces, such as the human body and microfluidic chips. Such lim-

ited workspace would not be an issue for potential microrobot applications

in healthcare, bioengineering, microfluidics, and desktop micromanufacturing.

Thus, almost all of the current mobile microrobotics studies in the literature

have been using the off-board approach, and therefore our microrobotics defi-

nition also covers such studies.

In addition to the above on-board and off-board approaches, microrobots can

also be classified as synthetic and bio-hybrid. In the former case, the micro-

robot is made of fully synthetic materials, such as polymers, magnetic mate-

rials, silicon, silicon oxide, metal alloys, composites, elastomers, and metals,

while the latter is made of both biological and synthetic materials. Bio-hybrid

microrobots are typically integrated with single or many cells, such as cardiac

or skeletal muscle cells, or microorganisms, such as bacteria, algae, sperma-

tozoids, and protozoa, and powered by the chemical energy inside the cell or

in the environment. They harvest the efficient and robust propulsion, sensing,

and control capabilities of biological cells at the microscale. Such cells could

propel the robot in a given physiologically compatible environment, and sense

environmental stimuli to control the robot motion by diverse mechanisms, such

as chemotaxis, magnetotaxis, galvanotaxis, phototaxis, thermotaxis, and aero-

taxis.

Reported miniature mobile robot sizes range from sub-micron to centime-

ter scale. We can classify such different length scale miniature robots as mil-
lirobots, microrobots, and nanorobots as given in Table 1.1. These small-

scale robots have different dominant physical forces and effects. For the on-

board approach case, their on-board components must have overall sizes much
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Figure 1.1
Diagram showing the benefits, challenges, and potential applications of mobile microrobots.

smaller than the given robot overall size. For millirobots, macroscale forces

such as bulk forces dominate the robot mechanics instead of microscale forces

and effects. The fluid dynamics is unsteady and even starts to be periodically

turbulent when the Reynolds number is much larger than 1. For nanorobots,

assumptions of continuum mechanics may not be valid at the sub-micron scale,

and effects such as Brownian motion and chemical interactions create highly

stochastic robot behavior. The fluid dynamics for nanorobots are no longer

described accurately by the Navier-Stokes equation, so the Reynolds number

is not relevant.

The size scale range in Table 1.1 presents significant new challenges in

fabrication, actuation, locomotion mechanisms, and power supply not seen

in macroscale mobile robotics. Microscale robots are particularly interesting

because new physical principles begin to dominate the robot behavior. Changes

in fluid mechanics, stochastic motions, and shorter time scales also challenge

natural engineering notions as to how robotic elements move and interact.

These physical effects must be taken into account when designing and operat-

ing robots at the small scale.

The benefits, challenges, and potential applications of mobile microrobots

are overviewed in Figure 1.1. Here, we see that microrobots promise to access

small spaces in a non-invasive manner as a new platform for microscale physics

and dynamics. Compared with other robotic systems, they can be fabricated
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Figure 1.2
A conceptual sketch of an example future mobile microrobot with spatio-selective surface func-
tionalization for potential medical applications. Each functional component could be assembled
on a main body. The main body further could serve as a large depot for therapeutics to launch
controlled release at the site of action. A closed-loop autonomous locomotion (e.g., a bio-hybrid
design) could couple environmental signals to motility. Targeting units could enable reaching and
localization at the intended body site. Medical imaging, e.g., magnetic resonance imaging (MRI),
contrast agents loaded on the microrobot could enable visualization as well as remote steering on
demand. Metallic nanorods could enable remote plasmonic or RF heating to decompose a tumor
tissue by hypothermia.

inexpensively in bulk for potential massively parallel applications. However,

several challenges arise in the design and control of microscale robots, such as

non-intuitive attractive/repulsive and contact/non-contact physical forces, lim-

ited options for power and actuation, significant fabrication constraints, and

difficulty in localizing such tiny robots. The field of microrobotics is particu-

larly exciting due to the potential applications in healthcare, bioengineering,

microfluidics, mobile sensor networks, and desktop microfactories. A concep-

tual sketch of an example mobile microrobot for medical applications is shown

in Figure 1.2 with its possible components and functions.
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Figure 1.3
Approximate timeline showing the emerging new microrobot systems with their given overall
size scale as significant milestones. (a) Implantable tiny permanent magnet steered by exter-
nal electromagnetic coils [1]. (b) Screw-type surgical millirobot [2]. (c) Bacteria-driven bio-
hybrid microrobots [3]. (d) Self-electrophoretic catalytic microswimmer [4]. (e) Bio-hybrid mag-
netic undulating microswimmer [5]. (f) Glucose-fueled catalytic microswimmer [6]. (g) Magnet-
ically controlled bacteria [7]. (h) MEMS electrostatic microrobot [8]. (i) Thermal laser-driven
microrobot [9]. (j) Magnetic bead driven by an MRI device in pig artery [10]. (k) Magnetic
microswimmer with rigid helical flagellum inspired by bacterial flagella [11, 12]. (l) Crawling
magnetic microrobot [13]. (m) Microtubular catalytic jet microrobot [14]. (n) Bacteria swarms
as microrobotic manipulation systems [15]. (o) 3D magnetic microrobot control [16]. (p) Self-
thermophoretic microswimmer [17]. (q) Bubble microrobot [18]. (r) Light-sail microrobot [19].
(s) Self-acoustophoretically propelled microrobot [20]. (t) Sperm-driven bio-hybrid microrobot
[21]. (u) Magnetic, chemotactic, and pH-tactic control of bacteria-driven microswimmers [22–24].
(v) Magnetic soft undulating swimmer [25]. (x) Untethered pick-and-place microgripper [26]. (y)
Cell-laden microgel assembling microrobot [27]. (z) Catalytic micromotors driven by enzymatic
reactions [28]. (aa) In vivo navigation of microswimmers [29, 30]. (bb) 6-degrees-of-freedom (6-
DOF) actuation of magnetic microrobots [31].

1.2 Brief History of Microrobotics

Advances in and increased use of microelectromechanical systems (MEMS)

since the 1990s have driven the development of untethered microrobots.

MEMS fabrication methods allow for precise features to be made from a wide

range of materials, which can be useful for functionalized microrobots. There

has been a surge in microrobotics work in the past few years, and the field is

relatively new and growing fast [55, 66–68]. Figure 1.3 presents an overview of
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a few of the new microrobotic technologies which have been published, along

with their approximate overall size scale.

The first miniature machines were conceived by Feynman in his lecture on

“There’s Plenty of Room at the Bottom” in 1959. In popular culture, the field

of microrobotics is familiar to many due to the 1966 sci-fi movie Fantastic

Voyage, and later the 1987 movie Innerspace. In these films, miniaturized sub-

marine crews are injected inside the human body and perform non-invasive

surgery. The first studies in untethered robots using principles which would

develop into microrobot actuation principles were only made recently, such

as a magnetic stereotaxis system [1] to guide a tiny permanent magnet inside

the human body and a magnetically driven screw which moved through tissue

[2]. Other significant milestone studies in untethered microrobotics include

a study on bacteria-inspired swimming propulsion [69], bacteria-propelled

beads [3, 70], steerable electrostatic crawling microrobots [8], laser-powered

microwalkers [9], magnetic resonance imaging (MRI) device-driven magnetic

beads [10], and magnetically driven milliscale nickel robots [71]. These first

studies have been followed by other novel actuation methods, such as heli-

cal propulsion [11, 12], stick-slip crawling microrobots [13], magnetotactic

bacteria swarms as microrobots [72], optically driven “bubble” microrobots

[18], and microrobots driven directly by the transfer of momentum from a

directed laser spot [19], among others. Figures 1.4 and 1.5 show a number of

the existing approaches to microrobot mobility in the literature for motion in

two dimensions and three dimensions. Most of these methods belong to the

off-board (remote) microrobot actuation and control approach, and will be dis-

cussed in detail later. It is immediately clear that actual microrobots do not

resemble the devices shrunk down in popular microrobotics depictions.

As an additional driving force for the development of mobile microrobots,

the Mobile Microrobotics Competition began in 2007 as the “nanogram”

league of the popular Robocup robot soccer competition [73]. This yearly

event has since moved to the IEEE International Conference on Robotics and

Automation and challenges teams to accomplish various mobility and manipu-

lation tasks with an untethered microrobot smaller than 500 μm on a side. The

competition has spurred several research groups to begin research in micro-

robotics, and has helped define the challenges most pressing to the micro-

robotics research field.
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Figure 1.4
Some existing remote (off-board) approaches to mobile microrobot actuation and control in 2D. (a)
Magnetically driven crawling robots include the Mag-μBot [13], the Mag-Mite magnetic crawl-
ing microrobot [32], the magnetic microtransporter [33], the rolling magnetic microrobot [34], the
diamagnetically levitating milliscale robot [35], the self-assembled surface swimmer [36], and the
magnetic thin-film microrobot [37]. (b) Thermally driven microrobots include the laser-activated
crawling microrobot [9], the micro-light sailboat [19], and the optically controlled bubble micro-
robot [18]. (c) Electrically driven microrobots include the electrostatic scratch-drive microrobot
[38] and the electrostatic microbiorobot [39]. Other microrobots which operate in 2D include the
piezoelectric-magnetic microrobot MagPieR [40] and the electrowetting droplet microrobot [41].

1.3 Outline of the Book

This book introduces the reader to the newly emerging robotics field of mobile

microrobotics. Chapter 2 covers the scaling laws that can be used to deter-

mine the dominant forces and effects at the micron scale. Such laws would

also give us a significant physical intuition when we design and analyze differ-

ent microrobots. Moreover, such scaling laws can be used to design and build

scaled-up robots to understand the design and control principles for micro-

robotic systems, which are much harder to study experimentally at the micron

scale directly.

In Chapter 3, forces acting on microrobots such as surface forces, adhesion,

friction, and viscous drag are given and analytically modeled for simple spher-

ical microrobot and flat surface interaction cases. Significant surface forces in

air are typically van der Waals, capillary, and electrostatic forces for microsys-

tems. In liquids, van der Waals forces still exist, but many other surface forces
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Figure 1.5
(a) Chemically propelled designs include microtubular jet microrobots [14], catalytic micro/-
nanomotors [42], and electro-osmotic microswimmers [43]. (b) Swimming microrobots include
the colloidal magnetic swimmer [5], the magnetic thin-film helical swimmer [44], the microscale
magnetic helix fabricated by glancing angle deposition [12], the helical microrobot with cargo car-
rying cage fabricated by direct laser writing [45], and the helical microrobot with magnetic head
fabricated as thin-film and rolled using residual stress [46]. (c) Microrobots pulled in 3D using
magnetic field gradients include the nickel microrobot capable of 5-DOF motion in 3D using the
OctoMag system [16] and the MRI-powered and imaged magnetic bead [47]. (d) Cell-actuated bio-
hybrid approaches include the artificially magnetotactic bacteria [48], the cardiomyocyte-driven
microswimmers [49], the chemotactic steering of bacteria-propelled microbeads [24], the sperm-
driven and magnetically steered microrobots [21], and the magnetotactic bacteria swarm manipu-
lating microscale bricks [15].

(such as double layer, hydration, and hydrophobic forces) also become impor-

tant. When the microrobot contacts surfaces or other robots, surface forces

induce adhesion, which is function of interfacial physical properties, contact

geometry, and load. For elastic and viscoelastic materials, such adhesive forces

and surface deformation are modeled using micro/nanoscale contact mechan-

ics models. When the robot moves and inserts shear force on another solid sur-

face it is in contact with, micro/nanoscale friction becomes crucial to model

and understand. Sliding, rolling, and spinning types of frictional forces are

modeled approximately. Inside fluids, microfluidic forces such as viscous drag

and drag torque are important to model while having possible wall effects (i.e.,
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changes in fluidic flows and forces due to the nearby walls) in the given opera-

tion environment. Finally, measurement techniques that can be used to charac-

terize such micron scale force parameters are described so that the force mod-

els could use real empirical parameter values towards realistic robot behavior

prediction.

Chapter 4 describes possible microfabrication techniques for microrobots,

which are photo-lithography, bulk micromachining, surface micromachin-

ing, LIGA process, deep-reactive ion etching, laser micromachining, two-

photon lithography, electro-discharge machining, micromilling, and so on.

Each method’s capabilities and limitations are studied so that the proper micro-

fabrication method for a given microrobot design can be determined optimally.

Especially, two-photon lithography is a recent exciting fabrication tool that

could create a wide range of complex 3D microrobots with specific surface

patterning and functionalization.

Chapter 5 includes possible on-board and remote sensing methods for

microrobots. Tiny cameras and piezoresistive, capacitive, and piezoelectric

microsensors could be potentially integrated to microrobots with proper size

reduction, signal conditioning, and powering. However, such on-board sensors

are not available for sub-mm scale robots, but remote magnetoelastic and opti-

cal sensing methods are more feasible for microrobots at the moment.

Microrobots can be actuated using on-board microactuators, self-propelled

using physical or chemical interactions with their operation medium or bio-

logical cells attached to them, or remotely actuated. Chapter 6 studies possi-

ble on-board microactuators such as piezoelectric, shape memory alloy, con-

ductive polymer, ionic polymer-metal composite, dielectric elastomer, MEMS

electrostatic or thermal, and magneto- and electrorheological fluid actuators.

Some of these actuators can be scaled down to micron scale as thin-film

or unimorph/bimorph bending-type actuators integrated to robot structures

directly while their on-board driving, control, and powering are still chal-

lenging for sub-mm scale robots. Chapter 7 describes self-propulsion meth-

ods that can use self-generated local gradients and fields or biological cells

as the actuation source in proper liquid environments. Such catalytic (e.g.,

self-electrophoretic, self-diffusiophoretic, self-generated microbubbles-based,

self-acoustophoretic, self-thermophoretic, and self-generated Marangoni flows

based propulsion) or biological (bacteria, muscle cell, and algae-driven

microswimmers) actuation approaches do not require any on-board electri-

cal power source, electronics, processor, and control circuitry, which make
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them promising for mobile microrobots down to few microns and even sub-

micron scale. Such self-propelling microswimmers are all stochastic and can

be controlled by tactic stimuli in the environment. Chapter 8 covers the com-

monly used remote microrobot actuation methods. Remotely generated phys-

ical forces and torques can be used to actuate microrobots operating in a lim-

ited workspace, such as inside the human body or a microfluidic device. Main

remote actuation methods based on magnetic, electrostatic, optical, and ultra-

sonic forces or pressures are explained. These actuation methods are currently

the most common untethered mobile microrobot actuation method in addition

to catalytic microswimming methods.

All current mobile microrobots have no on-board powering capability, there-

fore they are typically actuated remotely or self-propelled by the fuels in the

operation environment with no on-board functions such as sensing, process-

ing, communication, and computing yet. Only in the specific case of some bio-

hybrid microrobot designs, the chemical energy inside the cells can power the

biomotors and thus the locomotion of microswimmers. Such on-board func-

tions are indispensable for future medical and other microrobot applications

with more advanced capabilities. Therefore, Chapter 9 covers the possible on-

board powering methods for microrobots: we can integrate an on-board ener-

gy/power source, transfer power wirelessly, and scavenge power from the oper-

ation environment.

Chapter 10 includes the typical locomotion methods for microrobots on

surfaces, in liquids, in air, and on fluid-air interfaces. Microrobots can have

many different locomotion modes, such as surface locomotion in 2D (crawl-

ing, rolling, sliding, walking, and jumping), swimming in 3D (flagellar propul-

sion, pulling, chemical propulsion, body/tail undulation, jet propulsion, and

floating), locomotion at the air-fluid interface in 2D (walking, jumping, climb-

ing, sliding, and floating), and flying in the air in 2D or 3D (flapping wings,

rotary wings, and levitated near-surface motion). We study each locomotion

mode with its given physical conditions, possible actuation methods, power

consumption, and challenges. We also give example relevant biological coun-

terparts for each locomotion mode.

In Chapter 11, microrobot localization and control methods are studied.

Determining the location of untethered microrobots in a space is a major chal-

lenge, depending on the operational environment. Optical, magnetic (elec-

tromagnetic and MRI-based), x-ray, and ultrasound tracking methods are

described with their given resolution, speed, penetration depth, and potential

health and technical issues. Next, control, vision, planning, and learning issues
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for microrobots are briefly described. Controlling teams/swarms of micro-

robots is a significant challenge for future applications, and various multi-robot

control methods are studied for the case of magnetic microrobots especially.

Potential current and future applications of microrobots are covered in Chap-

ter 12. Biological and synthetic micropart manipulation using contact and non-

contact methods, healthcare, environment remediation, microfactory, reconfig-

urable microsystems, and scientific tool applications are described with given

challenges.

Chapter 13 summarizes and describes the key near-future challenges to solve

in the microrobotics field.
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assembly from milli- to nanoscales: Mmethods and applications,” Journal of Micromechan-
ics and Microengineering, vol. 19, p. 083001, July 2009.

[183] D. J. Filipiak, A. Azam, T. G. Leong, and D. H. Gracias, “Hierarchical self-assembly of
complex polyhedral microcontainers,” Journal of Micromechanics and Microengineering,
vol. 19, pp. 1–6, July 2009.

[184] J. S. Randhawa, S. S. Gurbani, M. D. Keung, D. P. Demers, M. R. Leahy-Hoppa, and D. H.
Gracias, “Three-dimensional surface current loops in terahertz responsive microarrays,”
Applied Physics Letters, vol. 96, no. 19, p. 191108, 2010.

[185] J. S. Song, S. Lee, S. H. Jung, G. C. Cha, and M. S. Mun, “Improved biocompatibility of
parylene-C films prepared by chemical vapor deposition and the subsequent plasma treat-
ment,” Journal of Applied Polymer Science, vol. 112, no. 6, pp. 3677–3685, 2009.

[186] T. Prodromakis, K. Michelakis, T. Zoumpoulidis, R. Dekker, and C. Toumazou, “Biocom-
patible encapsulation of CMOS based chemical sensors,” in IEEE Sensors, pp. 791–794,
Oct. 2009.

[187] K. M. Sivaraman, “Functional polypyrrole coatings for wirelessly controlled magnetic
microrobots,” in Point-of-Care Healthcare Technologies, pp. 22–25, 2013.



Bibliography 255

[188] H. Hinghofer-Szalkay and J. E. Greenleaf, “Continuous monitoring of blood volume
changes in humans,” Journal of Applied Physiology, vol. 63, pp. 1003–1007, Sept. 1987.

[189] J. Black, Handbook of Biomaterial Properties. Springer, 1998.
[190] R. Fishman, Cerebrospinal Fluid in Diseases of the Nervous System. Saunders, 2nd ed.,

1980.
[191] S. Palagi and V. Pensabene, “Design and development of a soft magnetically-propelled

swimming microrobot,” in International conference on Robotics and Automation,
pp. 5109–5114, 2011.

[192] P. Jena, E. Diller, J. Giltinan, and M. Sitti, “Neutrally buoyant microrobots for enhanced
3D control,” in International Conference on Intelligent Robots and Systems, Workshop on
Magnetically Actuated Multiscale Medical Robots, 2012.

[193] S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied
Physics Letters, vol. 85, no. 7, pp. 1128–1130, 2004.

[194] K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Sci-
ence, vol. 312, no. 5773, pp. 557–561, 2006.

[195] M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, “Stretchable, skin-mountable, and wearable
strain sensors and their potential applications: A review,” Advanced Functional Materials,
vol. 26, pp. 1678–1698, 2016.

[196] M. Amjadi, M. Turan, C. P. Clementson, and M. Sitti, “Parallel microcracks-based ultra-
sensitive and highly stretchable strain sensors,” ACS Applied Materials & Interfaces, vol. 8,
no. 8, pp. 5618–5626, 2016.

[197] J. Bernstein, S. Cho, A. King, A. Kourepenis, P. Maciel, and M. Weinberg, “A microma-
chined comb-drive tuning fork rate gyroscope,” in IEEE Int. Conf. on Microelectromechan-
ical Systems, pp. 143–148, 1993.

[198] Y. Sun, S. N. Fry, D. Potasek, D. J. Bell, and B. J. Nelson, “Characterizing fruit fly
flight behavior using a microforce sensor with a new comb-drive configuration,” Journal
of Microelectromechanical Systems, vol. 14, no. 1, pp. 4–11, 2005.

[199] G. Lin, R. E. Palmer, K. S. Pister, and K. P. Roos, “Miniature heart cell force transducer
system implemented in mems technology,” Biomedical Engineering, IEEE Transactions
on, vol. 48, no. 9, pp. 996–1006, 2001.

[200] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, and F. Delcomyn, “Design and fabrication of arti-
ficial lateral line flow sensors,” Journal of Micromechanics and Microengineering, vol. 12,
no. 5, p. 655, 2002.

[201] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” Proceedings of the
IEEE, vol. 86, no. 8, pp. 1640–1659, 1998.

[202] M. Sitti and H. Hashimoto, “Two-dimensional fine particle positioning under an optical
microscope using a piezoresistive cantilever as a manipulator,” Journal of Micromecha-
tronics, vol. 1, no. 1, pp. 25–48, 2000.

[203] Y. Arntz, J. D. Seelig, H. Lang, J. Zhang, P. Hunziker, J. Ramseyer, E. Meyer, M. Heg-
ner, and C. Gerber, “Label-free protein assay based on a nanomechanical cantilever array,”
Nanotechnology, vol. 14, no. 1, p. 86, 2002.

[204] O. Ergeneman, G. Dogangil, M. P. Kummer, J. J. Abbott, M. K. Nazeeruddin, and B. J.
Nelson, “A magnetically controlled wireless optical oxygen sensor for intraocular mea-
surements,” IEEE Sensors Journal, vol. 8, pp. 2022–2024, 2008.

[205] C. Pawashe, Untethered Mobile Magnetic Micro-Robots. PhD thesis, Carnegie Mellon Uni-
versity, 2010.

[206] K. G. Ong, C. S. Mungle, and C. A. Grimes, “Control of a magnetoelastic sensor tem-
perature response by magnetic field tuning,” IEEE Transactions on Magnetics, vol. 39,
pp. 3319–3321, 2003.



256 Bibliography

[207] P. G. Stoyanov and C. A. Grimes, “A remote query magnetostrictive viscosity sensor,”
Sensors and Actuators, vol. 80, pp. 8–14, 2000.

[208] M. Sitti, D. Campolo, J. Yan, and R. S. Fearing, “Development of PZT and PZN-PT
based unimorph actuators for micromechanical flapping mechanisms,” in IEEE Interna-
tional Conference on Robotics and Automation, vol. 4, pp. 3839–3846, 2001.

[209] J. Yan, S. A. Avadhanula, J. Birch, M. H. Dickinson, M. Sitti, T. Su, and R. S. Fearing,
“Wing transmission for a micromechanical flying insect,” Journal of Micromechatronics,
vol. 1, no. 3, pp. 221–237, 2001.

[210] M. Sitti, “Piezoelectrically actuated four-bar mechanism with two flexible links for
micromechanical flying insect thorax,” IEEE/ASME Transactions on Mechatronics, vol. 8,
no. 1, pp. 26–36, 2003.

[211] V. Arabagi, L. Hines, and M. Sitti, “A simulation and design tool for a passive rotation flap-
ping wing mechanism,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 787–
798, 2013.

[212] K. J. Son, V. Kartik, J. A. Wickert, and M. Sitti, “An ultrasonic standing-wave-actuated
nano-positioning walking robot: Piezoelectric-metal composite beam modeling,” Journal
of Vibration and Control, vol. 12, no. 12, pp. 1293–1309, 2006.

[213] B. Watson, J. Friend, L. Yeo, and M. Sitti, “Piezoelectric ultrasonic resonant micromotor
with a volume of less than 1 mm 3 for use in medical microbots,” in IEEE International
Conference on Robotics and Automation, pp. 2225–2230, 2009.

[214] H. Meng and G. Li, “A review of stimuli-responsive shape memory polymer composites,”
Polymer, vol. 54, no. 9, pp. 2199–2221, 2013.

[215] E. W. Jager, E. Smela, and O. Inganäs, “Microfabricating conjugated polymer actuators,”
Science, vol. 290, no. 5496, pp. 1540–1545, 2000.

[216] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers
with strain greater than 100%,” Science, vol. 287, no. 5454, pp. 836–839, 2000.

[217] L. Hines, K. Petersen, and M. Sitti, “Inflated soft actuators with reversible stable deforma-
tions,” Advanced Materials, vol. 28, no. 19, pp. 3690–3696, 2016.

[218] L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, “Soft actuators for small-scale robotics,”
Advanced Materials, doi: 10.1002/adma.201603483, 2016.

[219] W. C. Tang, M. G. Lim, and R. T. Howe, “Electrostatic comb drive levitation and control
method,” Journal of Microelectromechanical Systems, vol. 1, no. 4, pp. 170–178, 1992.

[220] J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, “Magnetorheological fluids: A
review,” Soft Matter, vol. 7, no. 8, pp. 3701–3710, 2011.

[221] M. Amjadi and M. Sitti, “High-performance multiresponsive paper actuators,” ACS Nano,
vol. 10, no. 11, pp. 10202–10210, 2016.

[222] W. Wang, W. Duan, S. Ahmed, T. E. Mallouk, and A. Sen, “Small power: Autonomous
nano-and micromotors propelled by self-generated gradients,” Nano Today, vol. 8, no. 5,
pp. 531–554, 2013.

[223] S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, “Synthetic self-propelled
nanorotors,” Chem. Commun., no. 4, pp. 441–443, 2005.

[224] N. S. Zacharia, Z. S. Sadeq, and G. A. Ozin, “Enhanced speed of bimetallic nanorod motors
by surface roughening,” Chemical Communications, no. 39, pp. 5856–5858, 2009.

[225] U. K. Demirok, R. Laocharoensuk, K. M. Manesh, and J. Wang, “Ultrafast catalytic alloy
nanomotors,” Angewandte Chemie International Edition, vol. 47, no. 48, pp. 9349–9351,
2008.



Bibliography 257

[226] S. Balasubramanian, D. Kagan, K. M. Manesh, P. Calvo-Marzal, G.-U. Flechsig, and
J. Wang, “Thermal modulation of nanomotor movement,” Small, vol. 5, no. 13, pp. 1569–
1574, 2009.

[227] J. L. Anderson, “Colloid transport by interfacial forces,” Annual Review of Fluid Mechan-
ics, vol. 21, no. 1, pp. 61–99, 1989.

[228] J. Ebel, J. L. Anderson, and D. Prieve, “Diffusiophoresis of latex particles in electrolyte
gradients,” Langmuir, vol. 4, no. 2, pp. 396–406, 1988.

[229] S. Sánchez, L. Soler, and J. Katuri, “Chemically powered micro-and nanomotors,” Ange-
wandte Chemie International Edition, vol. 54, no. 5, pp. 1414–1444, 2015.

[230] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and C. Bechinger, “Microswimmers in
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