Iterative Model-Fitting and Local Controller Optimization -
Towards a Better Understanding of Convergence Properties

Manuel Wiithrich! Bernhard Schélkopf!

Abstract

An intuitive strategy in model-based reinforce-
ment learning (RL) is the following: We always
execute the controller which is locally optimal
with respect to the current model, while the model
is updated continuously with the newly collected
data. This strategy seems to be quite widely used,
but to the best of our knowledge, a theoretical
analysis does not exist yet. Herein we take first
steps to correct this deficiency. We believe that
such an analysis will help us understand when
this strategy is applicable, and how the different
components (e.g. the model fitting) have to be
designed in order to guarantee convergence.

1. Introduction

In model based RL we run experiments on the real platform
in order to build a dynamics model. This model is then
used to find a good controller. Here we focus on the explo-
ration problem, i.e. which experiments to run in order to
quickly find a good controller. In Figure 1 we represent a
strategy which makes intuitive sense and seems to be quite
commonly used: We always execute the controller which
is locally optimal with respect to the current model, while
the model is updated continuously with the newly collected
data, see e.g. (Deisenroth & Rasmussen, 2011; Wahlstrom
et al., 2015; Deisenroth et al., 2013). Initially, the model
may be arbitrarily wrong, but intuitively we would expect
that it becomes more and more accurate and we ultimately
find a controller which is locally optimal with respect to the
true dynamics. However, this is merely an intuition and it is
not clear under what conditions this procedure will actually
converge to a local optimum of the true dynamics. Such a
theoretical analysis of this strategy does not exist yet to the
best of our knowledge, herein we take first steps to correct

"Empirical Inference Department, Max Planck Institute for
Intelligent Systems, Tiibingen, Germany. Correspondence to:
Manuel Wiithrich <manuel.wuthrich@google.com>>.

Accepted at the FAIM workshop “Prediction and Generative Mod-
eling in Reinforcement Learning”, Stockholm, Sweden, 2018.
Copyright 2018 by the author(s).

f compute (locally)
optimal controller

fit model

run experiment

Figure 1. Flow of information: 1) We compute a controller # which
is locally optimal with respect to the current dynamics model f ,2)
we execute this controller on the real system and obtain the data
7 = (z1.7,u1.7) consisting of the state and control trajectory, 3)
we fit the model to all the data seen thus far etc.

this deficiency. We believe that a better theoretical under-
standing of this type of algorithm will help us understand
when it is applicable, and how the different components (e.g.
the model fitting) have to be designed in order to guarantee
convergence.

Herein we consider a simplified setting, an analysis of a
more realistic situation is future work. We assume the true
dynamics to be deterministic and fully observable. We
assume that it is known to the agent that the true dynamics
belong to a finite set of possible dynamics. We prove that
in this setting this algorithm indeed converges to a local
optimum of the true dynamics. This preliminary result is
promising, and we believe that it can be extended to more
realistic settings.

2. Related Work

There is a large body of literature investigating the
exploration-exploitation problem for bandit settings, see
e.g. (Lai & Robbins, 1985; Auer, 2002; Madani et al., 2004;
Audibert & Bubeck, 2010). However, these algorithms are
typically concerned with global optimization. Similarly, it
seems that theoretical work considering the full RL prob-
lem typically assumes discrete systems with the goal of
finding a globally optimal policy (e.g. (Kearns & Singh,
2002; Brafman & Tennenholtz, 2002; Jaksch et al., 2010)).
Some results in the derivative-free convex optimization lit-

Iterative Model-Fitting and Local Controller Optimization

erature (e.g. (Zinkevich, 2003; Agarwal et al., 2010; Conn
et al., 2009)) seem to be more relevant for the situation
we are considering here. However, in their setting one can
merely observe the cost at the evaluated point, while here
we observe entire state-action trajectories, giving us richer
information. Furthermore, here we are interested in a par-
ticular algorithm which does not seem to have been studied
in that literature. Nevertheless, there may be interesting
connections worth exploring in the future.

In the adaptive control literature, a strategy very similar
to the one we are considering here is known as self-tuning
regulator, see e.g. (Astrom, 1995). Convergence results have
been obtained for some cases such as linear systems (e.g.
Theorem 4.1 in (Astrom, 1995)) and robotic manipulators
with unknown inertias (which is linear in parameters, see
e.g. (Slotine & Li, 1987)). These results are very interesting
and may provide a good starting point, but they do not apply
to the highly nonlinear models which are used in recent
work on model-based RL.

In the model-based RL literature, the main focus seems to
lie on the question of how to build a model from data, e.g.
the top left box in Figure 1. There are many different ap-
proaches to this, some common ideas are to use simple local
models (e.g. (Atkeson et al., 1997)), Gaussian processes
(e.g. (Deisenroth et al., 2015; Eleftheriadis et al., 2017))
or neural networks (e.g. (Watter et al., 2015; Wahlstrom
et al., 2015; Nagabandi et al., 2017)). However, it seems
that the question of how to pick the experiments to execute
is somewhat neglected. The typical strategy is to compute a
(locally) optimal controller with respect to the model, col-
lect some data (single or batch rollouts), then improve the
model etc. However, it is not obvious that this approach
will indeed converge to a (locally) optimal controller for the
true dynamics. To the best of our knowledge, a theoretical
analysis of this procedure does not exist yet, and hence it is
not known under what circumstances it is applicable.

3. Problem Statement

A discrete-time, deterministic optimal control problem is
defined by the tuple (X, U, T, f, cost, z1) where

e X C RY is the set of states,

o U C RM js the set of controls,

T € N is the number of time steps,

f:XxUx{1,..,T} — X is the dynamics function,

e cost: (X x U)T — R is the cost function,

e 21 € X is the initial state.

Algorithm 1
input: (f, H = (H))iepa
initialize: H' «+ H
for £ = 1to K do
0% < loc_opt, (HY)
6% < sample from ball(e)

},locopt,, €, K)

.....

H*+1 « hypotheses in HF consistent with
rollout(f, #%) and rollout(f, 0% + §%)

end for

return 0%

The goal is to find the optimal policy 7 : X x {1,...,T} —
U. We assume that the policy is parametrized by some real
parameter vector . For convenience we define

rollout(f,0) := (z1.7, u1.7) (1
with 21 = 21 2
o1 = [, ue,t) VE€{l,.,T—1} (3

up = mo(xye,t) Ve {l,..,T}.)

Hence, the optimal parameters are the ones which minimize
cost(rollout(f, 6)). (5)

While global optimization of this objective is typically infea-
sible, very impressive results have been obtained using local
optimizers (e.g. in robotic optimal control, see (Todorov
et al., 2012)). Here we define an e-local optimum as a point
6 which has a lower cost than every other point within some
e-ball except for a set of points with measure zero, i.e.

P(cost(rollout(f, §)) <cost(rollout(f, #+4))) = 1 (6)
with § ~ball(e).

We assume that we have access to a local optimizer, i.e.
there is a function

loc_opt, (f))

which returns an e-local optimal controller for any dynamics
f. Such local optimizers are usually very efficient since
they can use gradient information. However, here we do not
know f, but we only know a set of possible dynamics f € H
(assumed to have cardinality L). The question is whether
we can still guarantee convergence to a local optimum of
the unknown, true dynamics f.

4. Algorithm

In Algorithm 1 we describe the simple method which we
analyze in the following. It starts with some arbitrary hy-
pothesis from the set of possible dynamics H and executes
a locally optimal controller with respect to that hypothesis
as well as the same controller perturbed with some small

Iterative Model-Fitting and Local Controller Optimization

random perturbation. Then all dynamics hypotheses which
are not consistent with these rollouts are removed from H,
and one of the remaining hypothesis is adopted etc. We have
the following result for this procedure:

Lemma 4.1. Ifwe follow Algorithm 1, then the probability
of the returned controller 0 i being an e-local optimum of
the true dynamics f convergesto 1 as K — oc.

Proof. Each hypothesis H; has a certain probability of be-
ing revealed as false when executing it’s associated con-
troller

6; = loc_opt (H;) (8

on the real system (with and without perturbation § ~
ball(e))

py := P(rollout(f, #;) # rollout(H;, ;) vV
rollout(f, 6; +) # rollout(H,, 0; + 9)).

Let us call a hypothesis H; e-consistent if it has p; = 0, i.e.
it looks exactly like the true dynamics when executing it’s
associated controller or a slightly perturbed version of it.
Additionally, let

DPmin = min{p; : L € {1,...,L},p; > 0})

be the smallest probability of all hypotheses which are not
e-consistent.

Probability of not finding an e-consistent hypothesis

Let us now bound the probability of ending up with a hy-
pothesis which is not e-consistent

P(HE not e-consistent). (10)

Let us note that once the algorithm has found an e-consistent
hypothesis, it will stick with it. Furthermore, we assumed
that the true dynamics function is among the hypothesis
set, hence if the algorithm discards L — 1 hypotheses, the
remaining one is necessarily the true one (and hence obvi-
ously e-consistent). Since the algorithm goes through H
in order, it will take it the longest to find an e-consistent
solution if the only such hypothesis is the very last one, i.e.
Hy,.. Hence we have

P(HE not e-consistent) < (11)
P(discarding at most L — 2 hypotheses (12)

given Hy, ..., H;_; not e-consistent). (13)

At each round, when the considered hypothesis is not
e-consistent, the algorithm discards it with probability at

least p,,sn. Hence,
P(H 1K not e-consistent) < CDFginomial (L — 2, K, Prmin)
(14)

. 2
< exp <2(KPW;(L))

15)

where we have used a well-known tail-bound for the cu-
mulative distribution function of the binomial distribution.
Hence, we clearly have

lim P(H not e-consistent) = 0. (16)
K—o0

An e-consistent hypothesis yields a locally optimal
controller

Suppose we have an e-consistent hypothesis H; with cor-
responding locally optimal controller 6;. We need to show
now that 6; is not just locally optimal with respect to Hy,
but also the true dynamics f. This is easy to see, because
for 6; together with some random perturbation § ~ ball(e)
have the following properties:

e c-consistency of H; implies that

— rollout(H;, 8;) = rollout(f,6;),
— with probability 1
rollout(Hj, 6;+6) = rollout(f, 6; + §),

e and 6; being a locally optimal controller of H; means
that

— with probability 1 rollout(H;, 6;+9) will have a
larger cost than rollout(Hy, 6;).

Hence with probability 1 rollout(f, 8; + d) will have a larger
cost than rollout(f, 6;) which is precisely our definition of
a locally optimal controller. [

5. Discussion

The exploration strategy we considered herein is to always
act locally optimally with respect to the model, as it is being
built incrementally from incoming data. While strategies
along these lines are quite common in model-based RL, it
seems that there is not much theoretical work on this topic
yet. In this article, we have shown that this strategy will
indeed converge to a local optimum of the true dynamics in
the considered, simple setting. We believe that it is possible
to extend this result to more realistic settings, which might
give us important insights into the applicability and optimal
design choices of this class of model-based RL algorithms.
An interesting question for future work is whether we can ex-
tend this result to stochastic systems and hypothesis classes
which do not necessarily contain the true dynamics function.

Iterative Model-Fitting and Local Controller Optimization

References

Agarwal, A., Dekel, O., and Xiao, L. Optimal Algorithms
for Online Convex Optimization with Multi-Point Bandit
Feedback. COLT, 2010.

Astrom, K. J. Adaptive Control. Addison-Wesley, 1995.

Atkeson, C. G., Moore, A. W., and Schaal, S. Locally
Weighted Learning. In Aha, D. W. (ed.), Lazy Learning,
pp. 11-73. Springer Netherlands, Dordrecht, 1997.

Audibert, J.-Y. and Bubeck, S. Best arm identification
in multi-armed bandits. In COLT-23th Conference on
Learning Theory-2010, pp. 13—p, 2010.

Auer, P. Finite-time Analysis of the Multiarmed Bandit
Problem. Machine learning, 47:235-256, 2002.

Brafman, R. I. and Tennenholtz, M. R-MAX - A General
Polynomial Time Algorithm for Near-Optimal Reinforce-
ment Learning. Journal of machine learning research:
JMLR, 3(Oct):213-231, 2002.

Conn, A. R., Scheinberg, K., and Vicente, L. N. Introduction
to Derivative-Free Optimization. SIAM, April 2009.

Deisenroth, M. and Rasmussen, C. E. PILCO: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), pp. 465—472, 2011.

Deisenroth, M. P, Neumann, G., and Peters, J. A Survey on
Policy Search for Robotics. Foundations and Trends®)
in Robotics, 2(1-2):1-142, 2013.

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. Gaus-
sian Processes for Data-Efficient Learning in Robotics
and Control. IEEE transactions on pattern analysis and
machine intelligence, 37(2):408-423, February 2015.

Eleftheriadis, S., Nicholson, T., Deisenroth, M., and Hens-
man, J. Identification of Gaussian Process State Space
Models. In Guyon, 1., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 30, pp. 5309-5319. Curran Associates, Inc., 2017.

Jaksch, T., Ortner, R., and Auer, P. Near-optimal Regret
Bounds for Reinforcement Learning. Journal of machine
learning research: JMLR, 11:1563-1600, 2010.

Kearns, M. and Singh, S. Near-Optimal Reinforcement
Learning in Polynomial Time. Machine learning, 49(2):
209-232, November 2002.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):
4-22, March 1985.

Madani, O., Lizotte, D. J., and Greiner, R. Active Model
Selection. In Proceedings of the 20th Conference on Un-
certainty in Artificial Intelligence, UAI 04, pp. 357-365,
Arlington, Virginia, United States, 2004. AUAI Press.

Nagabandi, A., Yang, G., Asmar, T., Kahn, G., Levine, S.,
and Fearing, R. S. Neural Network Dynamics Models for
Control of Under-actuated Legged Millirobots. Novem-
ber 2017.

Slotine, J.-J. E. and Li, W. On the Adaptive Control of Robot
Manipulators. The International journal of robotics re-
search, 6(3):49-59, September 1987.

Todorov, E., Erez, T., and Tassa, Y. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp- 5026-5033, October 2012.

Wahlstrom, N., Schon, T. B., and Deisenroth, M. P. From
Pixels to Torques: Policy Learning with Deep Dynamical
Models. February 2015.

Watter, M., Springenberg, J. T., Boedecker, J., and Ried-
miller, M. Embed to Control: A Locally Linear Latent
Dynamics Model for Control from Raw Images. June
2015.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. Proceedings of the 20th
International Conference on, 2003.

