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Muscoskeletal systems have a number of benefits over traditional robots actuated by motors. To
name only the most prominent: 1) better dexterity through higher accelerations[1], 2) embodied
intelligence [3] and 3) account for higher accuracy demands by variable stiffness with altering
co-contraction levels [2]. Although a number of replica of skeletal muscles exist - among them
pneumatic artificial muscles (PAM) - they cannot be used in the same way in robots as in the human
motor system. Rather, the beneficial properties of this particular actuator should be leveraged [1].

Here, we highlight an idea on how to quantify variability to subsequently alter it with a system
actuated by antagonistic PAMs. The human motor system adjusts its compliance in unknown
situation in case some external force perturbs the system. Additionally, it was observed that the
change of compliance also influences the variability without considering any external force [2].
Humans decrease compliance by increasing the tension of all muscles in one joint, eventually ending
up in higher co-contraction levels.

The idea of using co-contraction to change variability has been around for many years [6, 5]. Many
of them try to account for variability with some kind of noise assumption in the model or learning a
probabilistic model from data. Especially, Gaussian Processes (GP) have been used to model inverse
and forward dynamics that describe the probability over next states s′ given the current state s and
action a (forward) or (s, s′) → a (inverse). In both cases the posterior distribution of the GP has a
mean function and a variance

µ(x?) = k(X,x?)
T (K + σ2

nI)
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σ(x?) = k(x?,x?) + k(X,x?)
T (K + σ2

nI)
−1k(X,x?) (2)

where k(·, ·) is a kernel function, X the design matrix with N training inputs as elements {xT
i }Ni=1

and the corresponding targets y = {yi}Ni=1. The test input x? as well as the training inputs xi consist
in the context of dynamical systems of either a concatenation of the current state and action [sT ,aT ]T

for forward dynamics or the current and desired consecutive state [sT , s′T ]T for inverse dynamics.

We set up a toy example to illustrate our understanding of the connection between co-contraction,
compliance, uncertainty and variability by fitting the function f(x) = 1.5x2−0.5x+0.3 sin(2πx)+1
with a GP from noisy samples. In particular, the target values y = f(x) + ε are corrupted by an
input dependent noise term ε = N (µ, x2σ). This should represent different variability levels in the
state-action space as present in antagonistically actuated systems for different co-contraction levels.

Figure 1 depicts the fit with a GP that (a) assumes constant noise levels and (b) occupies a het-
eroscedastic noise treatment. The training data is generated at discrete values of x to point out
what is meant by variability - similar but different outputs y at the same input locations x. The
variance represents the uncertainty of how good the estimation of the model is at x?. Hence, for
traditional GP regression the variance is lower where training data is available. This can be seen
in figure 1(a) and more detailed in figure 2 within the interval x = [0.3, 0.8]. However, traditional
GP regression does not discriminate the obvious different variability levels of intervals x = [0, 0.3]
and x = [0.8, 1]. Thus, variability cannot be modeled with the variance of a GP that uses Gaussian
likelihood p(y|f , X) = N (f , σ2

n) where a constant σn is found by maximizing the marginal likeli-
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Figure 1: GP prediction with (a) constant & (b) heteroscedastic noise assumption.

hood for the complete dataset D = {X,y}. The variability enters the variance of a GP only with the
hyperparameters of the kernel function k(·, ·) as y does not appear directly in eq. (2).
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Figure 2: Standard deviations of the
GPs in figure 1. The heteroscedas-
tic GP of fig. 1(b) captures differ-
ent noise levels of x while the tradi-
tional GP of (a) shows an increase
in σ(x) where no training data is
available and does not distinguish
between intervals x = [0, 0.3] and
x = [0.8, 1].

The solution we propose is to use heteroscedastic GPs instead.
The approach used in figure 1(b) [4] adds a GP prior on σn
hence learns the noise structure from data. Figure 2 confirms
the ability of heteroscedastic GPs to account for different noise
levels and hence qualifies to express variability in the data.

Having such a quantity is especially interesting for control of
over-actuated systems. Among other applications, the vari-
ability can be incorporated into the cost function enabling to
track a desired trajectory with a desired accuracy. This usage
of variability could have advantageous implications: Robots
need to be precise only in one point long a trajectory for many
real-world tasks like table tennis or darts. Leaving aside the
traditional trajectory tracking and all inherent difficulties to
be precise at all times, allowing for higher variability before
can possibly lead automatically to greater accuracy after at the
point-of-interest. Additionally, high control signals are usually
punished in cost functions to avoid bang-bang-control like ac-
tuation and therefore dangerous behaviors. Muscle-based systems reach equilibrium states also in
case the controls are not run down to zero which is inherently different to motors. Hence, punishing
control commands in musculoskeletal systems possibly renders good controls too costly. Variability
could step in as a measure of how much activation is needed for a particular desired trajectory as
it correlates with different co-contraction levels. If less exactness is required, less co-contract is
acceptable and thus lower controls will be applied.

Our subsequent work will be focused on supporting our claim of the presence and adjustability
through co-contraction of variability in muscle-based systems, in simulation as well as on the real
robot from [1].
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