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Abstract
We identify a new variational inference scheme
for dynamical systems whose transition function
is modelled by a Gaussian process. Inference in
this setting has either employed computationally
intensive MCMC methods, or relied on factorisa-
tions of the variational posterior. As we demon-
strate in our experiments, the factorisation be-
tween latent system states and transition function
can lead to a miscalibrated posterior and to learn-
ing unnecessarily large noise terms. We eliminate
this factorisation by explicitly modelling the de-
pendence between state trajectories and the Gaus-
sian process posterior. Samples of the latent states
can then be tractably generated by conditioning
on this representation. The method we obtain
(VCDT: variationally coupled dynamics and tra-
jectories) gives better predictive performance and
more calibrated estimates of the transition func-
tion, yet maintains the same time and space com-
plexities as mean-field methods. Code is available
at: github.com/ialong/GPt.

1 Introduction
Many time series are well explained by assuming their pro-
gression is determined by an underlying dynamical system.
A model of this dynamical system can be used to make
strong predictions of the future behaviour of the time se-
ries. We often require predictions of systems with unknown
dynamics, be it for economic models of financial markets,
or models of physical systems to be controlled with model
predictive control or model-based reinforcement learning.
Particularly in low-data regimes, estimates of the uncertainty
in the predictions are crucial for making robust decisions,
as the expected utility of an action can depend strongly on
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the distribution of the outcome (von Neumann et al., 1944).
A striking example of this is model based policy search
(Deisenroth & Rasmussen, 2011).

There are many approaches to time series prediction. Within
the machine learning community, autoregressive (AR)
(Billings, 2013) and state-space (SSMs) models are pop-
ular, in part due to the relative ease with which predictions
can be made. AR predictions are obtained by a learned map-
ping from the H last observations to the next one, whereas
SSMs model the underlying dynamical system by learning
a transition function which maps a system state forward
in time. At each point in time, the state contains sufficient
information for predicting both future states and observa-
tions. While AR models can be easier to train, SSMs have
the potential to be more data efficient, due to their minimal
state representation.

We aim to learn complex, possibly stochastic, non-linear
dynamical systems from noisy data, following the Bayesian
paradigm in order to capture model uncertainty. We use a
Gaussian process (GP) prior (Rasmussen & Williams, 2005)
for the transition function, giving the Gaussian Process State
Space Model (GPSSM) (Frigola et al., 2013). Aside from
capturing uncertainty, GPs are non-parametric, guaranteeing
that our model complexity will not saturate as we observe
more data.

Despite the challenge of performing accurate approximate
inference in the GPSSM, an impressive amount of progress
has been made (Frigola et al., 2014; McHutchon, 2014;
Eleftheriadis et al., 2017; Ialongo et al., 2017; Doerr et al.,
2018), helped along by the development of elegant varia-
tional inference techniques (Titsias, 2009; Hensman et al.,
2013) which retain the key non-parametric property of GPs.
In this work, we improve variational approximations by crit-
ically examining existing methods and their failure modes.
We propose a family of non-factorised variational posteriors
which alleviate crucial problems with earlier approaches
while maintaining the same efficiency. We refer to the pro-
posed approach as VCDT: variationally coupled dynamics
and trajectories.
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2 Background
State-space models are common in machine learning, and
appear in many forms. At the most basic level, linear-
Gaussian state-space models can be learned by maximum
likelihood, combining Kalman smoothing and EM for in-
stance (Roweis & Ghahramani, 1999). Extensions have been
developed for deterministic non-linear transitions (Ghahra-
mani & Roweis, 1999). Recurrent neural networks, like the
popular LSTM (Hochreiter & Schmidhuber, 1996) learn de-
terministic mappings with state space structure for sequence
prediction, which have seen successful recent use in a wide
range of tasks including translation (Sutskever et al., 2014).

2.1 Bayesian non-parametric approaches
We are particularly interested in prediction tasks which re-
quire good estimates of uncertainty, for example, for use
in model-based reinforcement learning systems (Deisen-
roth & Rasmussen, 2011). These applications distinguish
themselves by requiring 1) continual learning, as datasets
are incrementally gathered, and 2) uncertainty estimates
to ensure that policies learned are robust to the many dy-
namics that are consistent with a small dataset. Bayesian
non-parametric models provide a unified and elegant way
of solving both these problems: model complexity scales
with the size of the dataset and is controlled by the Bayesian
Occam’s razor (Rasmussen & Ghahramani, 2000). In this
work, we focus on approximations (Titsias, 2009; Hensman
et al., 2013; Matthews et al., 2016) which offer improved
computational scaling with the ability to fully recover the
original non-parametric model.

2.2 Gaussian process State Space Models
Recurrent models with GP transitions (GPSSM) have been
proposed in a variety of ways, each with its own inference
method (Wang et al., 2005; Ko & Fox, 2009; Turner et al.,
2010; Frigola et al., 2013). Early methods relied on maxi-
mum a posteriori inference for either the latent states (Wang
et al., 2005; Ko & Fox, 2009) or the transition function
(Turner et al., 2010). Frigola et al. (2013) presented the first
fully Bayesian treatment with a particle MCMC method that
sampled over the latent states and the GP transition function.
Due to issues with computational complexity and sampling
in higher dimensional latent spaces, later attention turned
to variational methods. All variational inference schemes
have so far relied on independence assumptions between
latent states and transition function (Frigola et al., 2014;
McHutchon, 2014; Ialongo et al., 2017), sometimes even
factorising the state distribution over time (Mattos et al.,
2016). Eleftheriadis et al. (2017) introduced a recognition
model to help with optimisation of the variational distribu-
tion, while keeping the mean-field assumption. Recently,
Doerr et al. (2018) introduced the first method to account
for the dependence between transition function and latent
states by using a doubly stochastic inference scheme similar
to Salimbeni & Deisenroth (2017). However, their approach

has severe limitations which we will discuss and show exper-
imentally. Bui et al. (2016) investigated Power Expectation
Propagation as an alternative approach for fitting factorised
approximate posteriors.

2.3 Variational inference approaches
Variational methods often make simplifying assumptions
about the form of the approximate posterior to improve
computational tractability. This may result in significantly
biased solutions. The bias is particularly severe if indepen-
dence assumptions are made where strong correlations are
actually present (Turner & Sahani, 2011). Clearly, in dy-
namical systems, the trajectory of the latent states depends
strongly on the dynamics. Hence, we focus on improving
existing variational inference schemes by removing the in-
dependence assumption between latent states and transition
function. We identify a general method that performs well
across varying noise scales.

3 The Model
3.1 State-space model structure
We model discrete-time sequences of observations Y =
{yt}Tt=1, where yt ∈ RE , by positing that each data point
is generated by a corresponding latent variable xt ∈ RD
(the system’s “state”). These latent variables form a Markov
chain, implying that, for any time-step t, we can generate
xt+1 by conditioning only on xt and the transition function
f . We take the system to evolve according to a single, time-
invariant transition function, which we would like to infer.
While our inference scheme provides the freedom to choose
arbitrary transition p(xt+1|f,xt) and observation p(yt|xt)
density functions, in keeping with previous literature, we
use Gaussians. We also assume a linear mapping between
xt and the mean of yt |xt. This does not limit the range of
systems that can be modelled, though it may require us to
choose a higher dimensional latent state (Frigola, 2015). We
make this choice to reduce the non-identifiabilities between
transitions and emissions. To reduce them further we may
also impose constraints on the scale of f or of the linear
mapping C. This allows the model to be expressed by the
following equations:

f ∼ GP(m(·), k(·, ·)) (1)

x1 ∼ N
(
µp

1
,Σp

1

)
(2)

xt+1 | f,xt ∼ N (f(xt),Q) (3)

yt |xt ∼ N (Cxt + d,R) (4)

where we take the “process noise” covariance matrix Q to
be diagonal, encouraging the transition function to account
for all correlations between latent dimensions. The crucial
difference from a standard state-space model is that we have
placed a GP prior over the transition function. Thus, for a
given mean function m(·) and positive-definite covariance
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function k(·, ·), any finite collection of function evaluations,
at arbitrary inputs Z = {zn}Nn=1, zn ∈ RD, will have a
Gaussian joint distribution:

p(f(Z)) , p(f(z1), . . . , f(zN )) = N (mZ ,KZ,Z) (5)

where [mZ ]n,1 = m(zn) and [KZ,Z ]m,n = k(zm, zn).
This gives the joint density of our model:

p(X,Y, f(X)) =

p(x1)p(f(X))

T−1∏
t=1

p(xt+1 | f,xt)
T∏
t=1

p(yt |xt) .
(6)

In order to draw samples, f(xt+1) has to be drawn by con-
ditioning on all the previously sampled function values:

p(f(xt+1) | f(x1:t)) = N
(
f(xt+1) |µft+1

,Σft+1

)
(7)

f(x1:t) , [f(x1), . . . , f(xt)]
T (8)

µft+1
, m(xt+1) +Kxt+1,x1:t

K−1x1:t,x1:t
(f(x1:t)−mx1:t

)

(9)

Σft+1
, Kxt+1,xt+1

−Kxt+1,x1:t
K−1x1:t,x1:t

Kx1:t,xt+1
.

(10)

By multiplying the Gaussian conditionals, we can return
to our GP prior as in eq. (5). Although the function values
are jointly Gaussian, the states X are not necessarily so,
since the GP’s mean and kernel functions specify non-linear
relations between inputs xt and outputs f(xt).

3.2 Multivariate latent states
If our state has more than one dimension (i.e. D > 1), we
model the system’s transitions f : RD → RD by placing a
GP prior on each of the fd : RD → R dimension-specific
functions, and we write:

f(xt) , {fd(xt)}Dd=1 , p(f(X)) =

D∏
d=1

p(fd(X)) (11)

where each independent GP has its own mean and kernel
functions: md(·), kd(·, ·). For ease of notation, we drop
subscripts indexing state dimensions d. Since the GP’s
are independent from each other, each process only has
to condition on its own function evaluations. Thus, the
multivariate conditional p(f(xt+1) | f(x1:t)) is a diagonal
Gaussian where the mean and variance of dimension d are
as in eq. (9) and eq. (10), using as mean function md(·) and
as kernel function kd(·, ·).

3.3 Control inputs
A control input ct ∈ RDc influences the transition in a
Markovian manner. We can therefore view it as being part
of an “augmented” latent state. This makes our transition
function f : RDx+Dc → RDx , and requires only a change
to f ’s kernel and mean functions to be defined overDx+Dc

input dimensions. Our transition probability is now also
conditioned on ct: p(xt+1 | f,xt, ct), though, for brevity,

we drop ct from the notation, as it is not a random variable
and we always condition on it.

3.4 Computational costs of sampling

Despite the conceptual similarity between the non-
parametric GPSSM and parametric non-linear state space
models, it is considerably more expensive to sample from
the GPSSM prior. The main reason for this can be seen in
eqs. (7) to (10): to sample xT we have to condition on the
T − 1 previous points. This requires incrementally building
up a T × T matrix inverse, which costs O

(
T 3
)

in time.
Since our non-parametric transition function is implicitly
defined by the function values f(x1:t) sampled so far, it is
necessary to condition on all previous samples to ensure
our overall function is self-consistent over the whole time
series.

This poses a problem for MCMC based inference methods,
which rely on drawing samples from distributions closely
related to the prior. Prediction from a GP posterior also has
cubic cost. One way to avoid this cost is to sample from
an adapted GP prior (e.g. FITC (Snelson & Ghahramani,
2005)), which was suggested by Frigola et al. (2013).

Modifying the model in this way can have unintended con-
sequences (Bauer et al., 2016), so we focus on performing
inference without assumptions on the structure of the GP
or its kernel. Our inference scheme should approximate the
correct model, while avoiding the O

(
T 3
)

cost at training
time.

4 Variational inference

4.1 General variational bound

We are interested in approximating the posterior
p(X, f |Y )1 using variational inference. The general pro-
cedure is to construct a variational lower bound L to
the log marginal likelihood that has the KL divergence
from an approximation to the true posterior as its slack:
log p(Y ) − L = KL[ q(X, f) ‖ p(X, f |Y ) ]. By maximis-
ing L w.r.t. q, we improve the quality of the approximation.

Practical stochastic variational inference places two require-
ments on approximating distributions. First, we need to be
able to generate samples from them and, second, we need
to be able to evaluate their density. We start by deriving
the lower bound for a general joint approximate posterior
q(X, f), to which we will later add constraints in order to
produce different tractability-accuracy trade-offs. Following
the usual derivation using Jensen’s inequality (Blei et al.,

1We abuse notation by directly denoting a density over the
infinite-dimensional f , even though such a density does not exist.
We only ever concern ourselves with finite subsets of f .
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2017), we obtain

log p(Y ) ≥
∫
q(X, f)

[
log

T∏
t=1

p(yt|xt)+

log
p(x1)p(f)

∏T−1
t=1 p(xt+1 | f,xt)
q(X, f)

]
dfdX (12)

=

T∑
t=1

Eq(xt)[log p(yt |xt)]−KL[ q(f) ‖ p(f) ]+

Eq(X,f)

[
log

p(x1)
∏T−1
t=1 p(xt+1 | f,xt)
q(X | f)

]
. (13)

For q(f) we will use a sparse Gaussian process (Titsias,
2009; Hensman et al., 2013; Matthews, 2016). This con-
straint is ubiquitous in models where the inputs to a GP
are random variables (Damianou et al., 2016), such as the
GPLVM (Titsias & Lawrence, 2010), or deep GP (Dami-
anou & Lawrence, 2013), as it provides analytical as well
as computational tractability. A sparse GP approximation
specifies a free Gaussian density on the function values u
at M locations q(u) = N (u;µu,Σu), and uses the prior
conditional for the rest of the Gaussian process, which we
denote f 6=u. At this time, we let X depend on the entire
process f for generality:

q(f 6=u,u, X) = q(X | f 6=u,u)p(f 6=u |u)q(u) . (14)

Choosing the posterior in this way results in a finite KL
between the approximate posterior and the prior, which
becomes KL[ q(u) ‖ p(u) ] (Matthews et al., 2016).

4.2 Approximate posterior design choices
So far, the only simplifying assumptions have been reducing
q(f 6=u|u) to the prior conditional p(f 6=u|u) and q(u) to a
Gaussian. Now we have to specify the form of q(X|f 6=u,u).
Most existing approximate inference schemes focused on
factorised posteriors q(X|f 6=u,u) = q(X) to obtain an ef-
ficient sampling scheme or even a closed form for L. In
particular, Frigola et al. (2014) find the optimal variational
q(X) by calculus of variations and sample from it, whereas
McHutchon (2014) and Ialongo et al. (2017) constrain it
to be Markov-Gaussian. A factorised, Gaussian posterior
together with Gaussian emissions leads to a Gaussian opti-
mal q(u), which, for certain kernels, gives us a closed-form
bound. Eleftheriadis et al. (2017) reduced the O(TD2)
memory cost associated with storing the Markov-Gaussian
q(X) and improved optimisation behaviour by employing
a recurrent neural network as a recognition model. This
also parallels the work of (Krishnan et al., 2017), where
recurrent neural networks perform smoothing in order to
learn a deterministic model of the dynamics.

In our experiments, we show that imposing independence
between X and f does in fact encourage over-confident
beliefs about the dynamics, which is a well-known phe-

nomenon in variational inference (Turner & Sahani, 2011).
To avoid this we focus on approximate posteriors which pre-
serve correlations between X and f in various forms. We
impose one more general constraint: Markovian structure
in X . This structure is required to eliminate the impractical
amount of correlations that can be expressed between the
large number of random variables in X . Furthermore, the
true posterior is also Markovian in X:

p(X|f, Y ) = p(x1|f, Y )

T∏
t=2

p(xt|f(xt−1),yt:T ) . (15)

Hence the general form of our approximate posterior:

q(X | f) = q(x1)

T−1∏
t=1

q(xt+1 | f,xt) (16)

where we are free to specify q(x1) and q(xt+1 | f,xt). We
can thus simplify the ELBO from eq. (13) to

L =

T∑
t=1

Eq(xt)[log p(yt |xt)]−KL[ q(u) ‖ p(u) ]+

−KL[ q(x1) ‖ p(x1) ]

−
T−1∑
t=1

Eq(f,xt)[KL[ q(xt+1|f,xt) ‖ p(xt+1|f,xt) ]] . (17)

Now we add two restrictions: 1) we use a Gaussian
q(xt+1 | f,xt) = N (xt+1; gt(f,xt), ht(f,xt)) to obtain
a tractable KL, and 2) we assume gt and ht are linear,
and depend only on a finite number of points on f(·),
q(xt+1 | f,xt) = N (xt+1;Atft + bt,S

∗
t ), to make the ex-

pectation over q(f) tractable. We choose At, bt, and St
to be free variational parameters in all cases (see table 1
for how St and S∗t are related). They are crucial to allow
information from the observations to make its way into our
latent state posterior. We now discuss various choices for
ft and S∗t , and the influence they have on the flexibility of
the approximate posterior, which we summarise in table 1.
The densities of all these variational distributions can still
be evaluated, and exact samples can be drawn for unbiased
evaluation of the bound.

4.3 A natural choice
Another way to justify our choice of posterior is that, for
Gaussian emissions, the exact posterior “filtering” factors:
p(xt+1|f,xt,y1:t+1) are Gaussians of precisely the form
we propose. In fact, we can compute the corresponding At,
bt, and S∗t in closed form:

S∗t = (Q−1 + CTR−1C)−1 (18)

At = S∗tQ
−1 (19)

bt = S∗tC
TR−1(yt+1 − d) . (20)

Notice that here At and S∗t are constant through time, reduc-
ing the time and memory footprint of the algorithm. While
the exact posterior “smoothing” factors p(xt+1|f,xt,y1:T )
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q(X | f) ft S∗t sampling
1) Factorised - linear q(X) xt St O(T )
2) Factorised - non-linear q(X) Kxt,ZK

−1
Z,Zµu St + AtCf (xt)A

>
t O(T )

3) Non-Factorised - non-linear q(X | f) f(xt) St O(T 3)
4) VCDT q(X |u) Kxt,ZK

−1
Z,Zu St + AtCf |u(xt)A

>
t O(T )

Table 1: Variations of approximate posteriors. At,bt,St are free parameters in all cases. Cf (xt) is the sparse GP’s
marginal posterior variance Cf (xt) , Kxt,xt

+Kxt,ZK
−1
Z,Z(Σu −KZ,Z)K

−1
Z,ZKZ,xt

whereas Cf |u(xt) is the
conditional variance of f(xt) |u: Cf |u(xt) , Kxt,xt −Kxt,ZK

−1
Z,ZKZ,xt .

are not generally Gaussian or closed-form (hence leaving
At,bt,St free), in settings where the observation noise is
small, filtering and smoothing will give very similar results,
making the filtering factors very close to optimal. Like-
wise, if future observations hold little information about the
present due to process noise corruption, the filtering factors
will provide good approximations to the conditional state
posterior.

4.4 Factorised approximations
We can recover the existing Gaussian factorised approxi-
mation of McHutchon (2014) by taking ft = xt (see 1 in
table 1). The linear relationship between consecutive states
implies a linearisation of the transition function. Yet, the
true p(xt+1|f(xt),yt+1:T ) will contain influence from xt
only through the non-linear transition function.

We can break the linearisation constraint by correlating xt+1

with xt “pushed through” the approximate GP mean (2 in
table 1). This results in a non-Gaussian q(X) which is still
factorised from q(f). Since this corresponds to marginalis-
ing out f from q(X | f), we let S∗t = St + AtCf (xt)A

>
t

to allow our state posterior to be more “uncertain” precisely
where our GP posterior tells us to. If the observations pro-
vide sufficient evidence to discount the GP’s uncertainty,
optimisation will drive At and St down, giving us a concen-
trated state posterior.

The main reason we introduce this modified factorised
method, is so we can directly isolate the effect of intro-
ducing dependence between X and f , compared to simply
making q(X) non-Gaussian.

Both approximate posteriors can be sampled in O(T ) time
due to their Markovian structure. The factorised - linear
posterior is particularly convenient as it allows us to exploit
GPU-optimised banded-matrix operations as in Durrande
et al. (2019).

4.5 Direct dependence on f
The factorised, non-linear approximation from the previous
section is attempting to indirectly incorporate the learned
transition function into the approximation over X . Instead
of summarising the information using the mean of f , we
want to break the factorisation between X and f by using

the actual, stochastic f in the approximation. This is sum-
marised in table 1, line 3. The actual function value f(xt)
of a function in the posterior is weighed by At against bt.

Sampling from this approximate posterior poses a challenge.
From eq. (16), we note that every time a f(xt) is sampled,
it has to be consistent with a single function throughout the
entire time series. This means that f(xt) has to be sampled
by conditioning on the function values sampled for earlier
time-steps, resulting in an O

(
T 3
)

cost (as per section 3.4).
This high cost prohibits learning in long time series. We
can circumvent this issue by cutting the approximate pos-
terior into subsequences with lengths τ1, . . . , τn. The state
immediately after a subsequence, e.g. xτ1+1 is given a non-
conditional posterior:

q(X | f) =

[
q(x1)

τ1−1∏
t=1

q(xt+1 | f,xt)

]
×[

q(xτ1+1)

τ1+τ2−1∏
t=τ1+1

q(xt+1 | f,xt)

]
. . . . (21)

This reduces the cost of sampling to O
(
T
τ τ

3
)

(for
τ1, . . . , τn = τ ), and allows for mini-batching over sub-
sequences. However, this factorisation catastrophically
“breaks” long-range dependences, again introducing a po-
tential mismatch between our state and transition function
posteriors. In the extreme case of τ = 1, we would obtain
an approximate posterior which factorises completely across
time, as in Mattos et al. (2016).

4.6 VCDT and “U-dependence”
The previous section introduces an approximate posterior
exhibiting dependence between X and f . This will gener-
ally come at a cubic cost since our transition function has
potentially as many degrees of freedom as time-steps. Para-
metric models avoid this cubic cost since they can sample
a transition function with fixed degrees of freedom before
sampling the entire time series. Conveniently, our sparse
variational GP posterior separates the finite degrees of free-
dom that we can learn from the data, from the rest of the
potentially infinite degrees of freedom of our prior.

In order to gain an approximate posterior with a tractable
sampling scheme, we choose q(X|f) = q(X|u) ((4) in
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table 1). Crucially, we can sample from this posterior in
linear-time, as only a single u needs to be sampled from q(u)
for an entire sample trajectory. We are effectively being
parametric about our sample trajectories while minimising
a KL distance from the full non-parametric model. By the
properties of sparse variational GPs (Matthews et al., 2016),
by adding more inducing points we can reduce this distance.

Intuitively, by finely tiling with inducing points the parts
of the state-space we are likely to traverse with our sample
paths we can fully specify the behaviour of our transition
function in those regions. In this case, conditioning on u
is sufficient to “tie” down the transitions arbitrarily tightly
leaving very little to be gained by additionally conditioning
on sampled f values. The elegance of this approach lies in
the fact that we can assess how many inducing points are
required by finding the saturation point where the converged
ELBO values stop improving as more points are added.

4.7 Comparison to PR-SSM
Doerr et al. (2018) were, to the best of our knowledge,
the first to consider a non-factorised variational posterior
for the GPSSM. Their work, however, has two significant
shortcomings. Firstly, q(xt+1|f,xt) is taken to be the same
as the prior transition. This leaves no free parameters, except
for those in q(x1) and q(u), to incorporate information from
the observations into our posterior: no filtering or smoothing
is possible. This gives a good approximation only when the
process noise is low and/or the observed sequence is short,
as low noise levels can compound in a long sequence. Even
in the absence of process noise, using the observations to
update our beliefs about the states can help optimisation
greatly by effectively setting up easier “targets” for the GP
to go through. Notice that by setting At = I, bt = 0, and
St = Q in our posterior transitions we can also force them
to match the prior, making PR-SSM a special case of our
more flexible parameterisation.

Secondly, Doerr et al. (2018) employ a sampling scheme
which gives incorrect marginal samples of q(xt), even as-
suming, as they did, that:

p(f(x1), . . . , f(xT−1)|u) =
T−1∏
t=1

p(f(xt)|u) . (22)

Despite this conditional factorisation assumption, once u
is integrated out, as in PR-SSM, the f(xt)’s become corre-
lated. Thus, in order to correctly sample f(xt), we need to
condition on all previous samples f(x1:t−1), introducing a
cubic time cost. This is ignored in PR-SSM and samples
from the posterior over f are effectively drawn indepen-
dently for every time-step t. The resulting samples from
q(xt) are biased. A mismatch is thus introduced between
the functional form of the approximate posterior (which has
correlations between function values), and the samples we
use to compute its expectations. Hence, PR-SSM’s objective

does not correspond to a valid variational lower bound.

We solve this by explicitly sampling u and conditioning
on it. Conditioning on the same u enforces consistency of
the dynamics along a sample trajectory. However, we also
wish to avoid the factorisation assumption of eq. (22) as that
does not generally correspond to a valid GP prior. Explicitly
assuming q(X | f) = q(X |u) we obtain a valid variational
bound where we only need to condition on u to sample X ,
giving us an O(T ) cost while maintaining a full GP prior.

5 Experiments
In the experiments we set out to test how the proposed
posterior (VCDT) compares with the Factorised - linear,
Factorised - non-linear, and PR-SSM (Doerr et al., 2018)
approximations. Each model serves as a “control” for a
specific experimental question:

1. Factorised - linear: what is gained by making our ap-
proximation non-linear? I.e. if our posterior q(X)
were not jointly Gaussian, but only its Markovian con-
ditional factors.

2. Factorised - non-linear: what is gained by introducing
dependence between our states and our transition func-
tion? I.e. if we do not marginalise both f(xt) and u
from our posterior over X .

3. PR-SSM: what is gained, or lost, by forcing our model
to find transition functions that explain the data well,
without accounting for process noise?

To answer these questions, we test model calibration and
predictive performance in a number of environments: the
“kink” function, a set of five system identification benchmark
datasets (also used in (Doerr et al., 2018)), and a cart and
pole system.

5.1 “Kink” Function
We generate data according to the transition function dis-
played in red in fig. 1:

f(x) = 0.8 + (x+ 0.2)(1− 5

1 + exp (−2x)
) .

This function generates cyclic trajectories through the state-
space, as it combines two linear segments with slope greater
than 1 (left) and less than −1 (right). It also contains a
non-linearity at the joining of these segments, giving it a
variety of dynamics and serving as an interesting testing
environment. We train our models on the data described in
fig. 1, fixing their emissions (C,d,R) to the true, generative
ones so as to enable direct latent space comparison2.

In order to make inference challenging, we add a small
amount of process noise (s.d. 0.05) and a significant amount

2This is to side-step any scale invariances built into our model.
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Figure 1: “Kink” data. In red is the true system transi-
tion function, in black are the latent states and in grey the
observations. Each point’s (x, y) coordinates are a pair
(xt,xt+1) or (yt,yt+1) for some index t. Such pairs are
connected through time, highlighting trajectories through
the state-space. A sequence of 120 latent states were sam-
pled beginning from a standard normal x1. Their trajectory
was perturbed by Gaussian noise with s.d. 0.05. Obser-
vations were obtained by adding Gaussian noise with s.d.√
0.8 to the latents.

of observation noise (s.d.
√
0.8). As we can see from fig. 2,

in this regime PR-SSM is unable to learn, given that its
posterior encourages it to find trajectories with no process
noise. Indeed, regardless of which data we are training
on, during optimisation, PR-SSM always drives the process
noise to zero. This leads it to converge to poor solutions
when process noise exists and/or to drive up the observation
noise (across all experiments, PR-SSM learned the highest
values for the observation noise). Even initialising PR-SSM
at the solution found by other methods leads to the same
sub-optimal fit of fig. 2. On the other hand, the GPSSM
models can handle process noise and recover inflated es-
timates of it in order to ascribe some transitions to noise
and justify smoother dynamics. The Factorised - linear
model’s estimates of the process noise are consistently the
highest (across many settings of noise parameters and se-
quence lengths), followed by the Factorised - non-linear
model. As can be seen in fig. 3, VCDT finds the most well-
calibrated posterior. The factorised approaches (the linear
one is shown, though they gave a very similar fit) result
in a posterior that is not only less accurate, but also more
confidently wrong. In general, the posteriors found by the
factorised approaches favour higher process noise to achieve
smoother, over-confident dynamics. This is consistent with
the behaviour discussed in (Turner & Sahani, 2011): mean-
field variational inference favours more concentrated pos-
teriors. By matching our true posterior’s structure more
closely and modelling the dependence between X and f ,
we can overcome this issue.

5.2 System identification benchmarks
We also train our models on five benchmark datasets taken
from (De Moor et al., 1997). Test set results are reported
in table 2. As in (Doerr et al., 2018), we train on the first

−4 −3 −2 −1 0 1 2
xt

−3

−2

−1

0

1

2

x t
+

1

PR-SSM

learned function mean
true function

Figure 2: PR-SSM fails to learn in the presence of process
noise, for moderately long time series (T = 120). Plot
elements as in fig. 3.

half of the sequence, we normalise the data, and we use a
4-dimensional latent state (plus 1 non-stochastic dimension
for the control inputs). No mini-batching was used, the
bound is evaluated using 100 samples from the posterior,
and we use 100 variational inducing points. The test results
are for predictions 30 steps into the future from the end of
the training sequence.

We initialise all models at the solution found by the Fac-
torised - non-linear method to assess differences in optima
of the variational objectives. This turned out to be necessary
for PR-SSM as learning on such long sequences, without
mini-batching, proved very challenging without any filtering
from the observations. As can be seen from table 2, PR-
SSM can often find good solutions despite its constraints.
This is particularly true for low noise regimes, as in the
“Drive” dataset. The GPSSM models are more robust in
general though, with VCDT in the lead among GPSSMs
for NLPP in all but the last two datasets. No error-bars
are displayed since the initialisation was deterministic, no
mini-batching was used, and 100 samples from the posterior
gave low variance estimates of the training objective. To
compute the test statistics accurately, we used many more
samples (105).

5.3 Cart and pole
Finally, we consider a cart and pole system (or inverted
pendulum). We add Gaussian noise to the states in order
to obtain our observations. Standard deviations are: 0.03;
0.1047; 0.4; 1.3963; for the respective dimensions of our
system: cart position, pendulum angle, cart velocity and an-
gular velocity of the pendulum. The noise s.d. levels corre-
spond to 3cm; 6 degrees; 3cm/0.075sec; 6 degrees/0.075sec.
Results for models fit using 100 samples from the posterior
(per optimisation step) and 300 inducing points are shown
in table 3. Because there is no process noise and the training
sequences are short (20 time-steps), we see that PR-SSM
performs the best in terms of predictive performance. Of
course PR-SSM can be viewed as a special case of our ap-
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Figure 3: Posterior miscalibration due to factorisation. Left: fit for the factorised q(X)q(f); Middle: fit for VCDT
q(X |u)q(f); Right: superimposed posteriors (grey is factorised, black is VCDT). All subplots: the shaded regions
indicate a 3σ confidence interval and the contour plots (left and middle) show the pairwise posteriors q(xt,xt+1) over some
test latent states. The (x, y) coordinates of the squares, triangles and circles correspond to, respectively: the true latent states
(xt,xt+1), the observed states (yt,yt+1) and the means of the marginal posteriors (Eq(xt)[xt],Eq(xt+1)[xt+1]).

MODEL ACTUATOR BALLBEAM DRIVE DRYER GAS FURNACE

FACTORISED - LINEAR -0.364; 0.154 -0.486; 0.075 0.770; 0.439 -0.709; 0.098 -0.296; 0.170
FACTORISED - NON-LINEAR -0.641; 0.142 -1.379; 0.073 0.283; 0.246 -1.310; 0.049 0.264; 0.168
VCDT -0.644; 0.141 -1.395; 0.072 0.238; 0.285 -1.282; 0.050 0.377; 0.169
PR-SSM (INITIALISED) 3.653; 1.976 24.765; 1.118 -0.649; 0.139 -1.265; 0.053 0.144; 0.162

Table 2: Test set performance (NLPP; RMSE) for the system identification datasets. Lower is better.

proximation, albeit with a mismatched sampling scheme.
Running the experiment with the correct sampling scheme
and fixing the variational parameters to: At = I, bt = 0,
and St = Q, we learn a solution with the same performance
as PR-SSM. In the GPSSM models, VCDT performs the
best, and, as can be seen in fig. 4, it also recovers the low-
est noise levels, using the dynamics to explain more of the
structure in the data.

MODEL NLPP RMSE

FACTORISED - LINEAR 2.268 3.548
FACTORISED - NON-LINEAR 1.847 2.974
VCDT 0.694 2.139
PR-SSM -0.049 1.613
PR-SSM (CORRECTED SAMPLING) -0.053 1.628

Table 3: Test set performance for the Cart and Pole dataset.
Results averaged over 30 different test sequences (prediction
20 steps into the future). Lower is better.

6 Conclusion
The GPSSM is a powerful formalism. The main challenge
is to perform fast, accurate inference. Variational inference
maintains many of the benefits of using non-parametric mod-
els, but faces particular difficulties in time series models due

Cart Position Pendulum Angle Cart Velocity Pendulum Velocity
Cart and Pole Dimensions
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Figure 4: Lower values of the learned process noise standard
deviation.

to their sensitivity to factorisation assumptions. Naive non-
factorising approximations regain the poor computational
scaling that variational methods were introduced to avoid.
By exploiting the low-rank structure of the approximate
GP posterior, we were able to construct a non-factorised
posterior with the desired computational scaling. This often
leads to better predictive performance, calibration, and an
improved estimation of model parameters.



Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

Acknowledgements
ADI would like to acknowledge the generous support of
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