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Abstract. Physical scene understanding is a fundamental human abil-
ity. Empowering artificial systems with such understanding is an impor-
tant step towards flexible and adaptive behavior in the real world. As a
step in this direction, we propose a novel approach to physical scene un-
derstanding in video. We train a deep neural network for video prediction
which embeds the video sequence in a low-dimensional recurrent latent
space representation. We optimize the total correlation of the latent di-
mensions within a variational recurrent auto-encoder framework. This
encourages the representation to disentangle the latent physical factors
of variation in the training data. To train and evaluate our approach,
we use synthetic video sequences in three different physical scenarios
with various degrees of difficulty. Our experiments demonstrate that our
model can disentangle several appearance-related properties in the unsu-
pervised case. If we add supervision signals for the latent code, our model
can further improve the disentanglement of dynamics-related properties.

1 Introduction

A fundamental ability of humans for understanding dynamic scenes is to perceive
physical properties of objects and predicting the physical evolution of a scene
coarsely into the future. Providing cyber-physical systems with these abilities is a
key ingredient to flexible and adaptive behavior in the real word. A large body of
computer vision research has recently demonstrated the success of deep learning
techniques for tasks such as object detection and recognition in images or video
prediction. Learning to reason about the dynamic physical states of objects in
video attracts increasing attention recently. A significant part of this research
focuses on regressing the physical states of the system from images and using a
physics-engine-like module to predict successive frames [28, 2, 25, 30]. Although
this is a straightforward approach, it requires hand-crafted tailoring of the state
representation and simulator for the specific task. For example, one needs to
decide the physical laws to use or the number of represented objects. Some
studies instead directly predict future frames end-to-end using deep learning
based models [31]. Learning latent state representations that disentangle the
physical factors of variation in the data such as object speed, position, mass,
and friction, however, is still an open research problem. Such models would
allow for introspection of the physical properties of a scene.
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In this paper, we propose a variational approach to video prediction that
learns a recurrent latent representation of the video and allows for predicting
sequences into the future. Our network architecture is inspired by state-of-the-
art approaches to video prediction [31, 8, 20]. To encourage the learning of a
disentangled latent representation we minimize total correlation [4] of the latent
dimensions and present videos of varying physical properties during training. We
train and evaluate our model on synthetic videos of three physical scenarios with
varying level of difficulty (sliding objects, collision scenarios). Our experiments
demonstrate that our model can learn to disentangle several appearance-related
properties such as shape or size of objects. For various dynamics-related physical
properties such as speed and friction, we add supervision signals to the latent
dimensions and demonstrate that training on total correlation can also improve
disentanglement for these properties. To the best of our knowledge, our work
is the first to apply total correlation minimization with the aim of discovering
physical latent factors in the scene.

The main contributions in this paper are summarized as follows: a) We pro-
pose a video prediction model inspired by [31, 8, 20] and train it using total
correlation [4]. We also propose an approach to include supervision of dynamics-
related properties for representation learning. Our model simultaneously predicts
a sequence of future frames and generates latent representations which are phys-
ically interpretable for several appearance- and dynamics-related properties. b)
We analyze our approach on video datasets of three different physical scenar-
ios with increasing difficulty 1. We suggest evaluation metrics for reconstruction
quality and disentanglement of latent physical properties for the datasets. c) We
provide detailed experiments and analysis which demonstrate that our method
outperforms several variants in our datasets.

2 Related Work

Learning of Physical Scene Understanding: In recent years, the machine
learning community has investigated several approaches to physical scene under-
standing [33, 22, 32, 31, 28, 25, 30]. Some approaches attempt to learn the dynam-
ics of physical scenes from the explicit state representations (object positions,
speed, etc.) which are provided by physics engines [25, 30]. For instance, [25]
represents the physical states as a graph and build a learnable and differen-
tiable physics engines to update this graph. The approach in [30] introduces
a pipeline to predict the next frame with a physics engine in their structure.
Visual interaction networks [28] combine recurrent neural networks and interac-
tion networks [2] to predict the next physical state. Our approach learns state
representations and dynamics models directly from video sequences.

More closely related to our approach, instead of utilizing a physics engine
to predict the future state, Ye et al. [31] learn to predict the next frame in an
end-to-end way. The proposed architecture is an encoder-decoder network which

1 Dataset available from: https://github.com/TsuTikgiau/DisentPhys4VidPredict
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takes four frames in sequence as input and predicts the next frame. For train-
ing, the paper proposes a special dataset that consists of multiple small batches
where only a single physical property is varied while others are held fixed. Train-
ing then imposes a manual assignment of latent variables to physical properties
and penalizes deviations of the fixed properties on each batch of sequences from
the mean prediction. We instead combine supervision of dynamic properties on
specific latent dimensions with a training objective that encourages disentangle-
ment.

Physical Scene Understanding Datasets: A number of studies con-
struct benchmarks with specific properties [29, 24, 21, 23, 31]. For example, Pi-
loto et al. [23] and Riochet et al. [24] focus on the physical plausibility of videos.
Lerer et al. introduce a benchmark [21] that includes sequences of wooden-block
towers which might collapse for which models need to estimate the trajectories
of blocks. [31] contains 5-frame videos of collisions between two objects with
simple shapes in a simulator for which the last frame needs to be predicted from
the first four frames. Wu et al. [29] record videos in various scenarios in the real
world (sliding down a ramp, colliding objects, etc.). The evaluated models need
to predict concrete physical properties like bounce height and acceleration. We
propose a new video prediction dataset in physical scenes with three scenarios
of varying difficulty (sliding objects, colliding objects). In each dataset we vary
the physical properties of the objects for which adequate disentangled represen-
tations should be learned. Besides image reconstruction metrics, we also propose
to use disentanglement metrics.

Video Prediction: Our proposed method is closely related to the field of
video prediction. In this field, researchers focus on how to predict a sequence of
future frames given a few initial frames [18, 27, 26, 34, 7, 8, 1, 20]. For instance,
[26] takes previous frames as input and predicts future frames at the pixel-level.
Directly predicting images is prone to loosing details about the appearance of
objects though. [27] instead predicts optical flow from the last to the next frame
and warps the last frame with the optical flow to generate the prediction. [34]
improve the optical flow method using a bilinear sampling layer to make the
warping process differentiable. [8] introduces multiple convolutional flow kernels
to warp the last frames and composites them into one final output as an alter-
native to the global optical flow. The optical flow generated images combined
with a network stream that directly predicts on the pixel-level. The model also
inputs the first frame in the sequence, mostly to maintain information about
appearance of objects and background. Dynamics is modelled through LSTMs
on the layers of the encoder. Based on [8], [20] applies VAE-GAN [19] for better
reconstruction quality. Our network architecture also predicts the future frame
in a recurrent VAE structure. We only impose recurrency on the latent state and
use total correlation to train for disentanglement.

Representation Learning: Representation learning is an important field
to our work. A great deal of previous research has focused on unsupervised
representation learning [5, 12, 3, 15, 4]. InfoGAN [5] trains to increase the mutual
information between latent codes and generated frames in GANs [10]. Higgins et
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Fig. 1. An overview of our proposed recurrent encoder-decoder network for video pre-
diction. All information about the scene dynamics needs to be maintained in the hidden
state of the Gated Recurrent Unit at the last layer of the encoder.

al. [12] analyze that increasing the weight of the KL-divergence loss in VAEs [17]
helps to disentangle the latent code. Burgess et al. [3] explain this phenomenon
using the information bottleneck theory and propose a method which smoothly
decreases the weight for the KL-divergence loss. FactorVAE and β-TCVAE [15,
4] decompose the KL-divergence term into three components and only increase
the penalty to the part which is responsible for the disentanglement. Some works
also investigate the learning of latent state representations and dynamics models
in videos [14, 9, 11]. We apply total correlation minimization to learn a latent
state representation to encourage discovering physical latent factors.

3 Method

Our deep learning approach to video prediction uses a recurrent stochastic
encoder-decoder architecture which successively predicts the next frame from
a sequence of input frames. We train the network using a variational approach
which minimizes the total correlation between the encoded latent dimensions.
This way, the network is encouraged to learn a representation that disentangles
the latent factors of variation in the training videos.

Our model recursively predicts a low-dimensional latent code representation
of video sequences. The latent code zt causally explains the image observations ot
in the video with the observation model p(ot | zt). For predicting the next latent
code, we learn an encoder qθ(zt|o<t) that uses information from all previous ob-
servations. More specifically, we implement our encoder as a recurrent model. It
takes in the previous hidden state st−1 and the last observation ot−1 to compute
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the next hidden state st = fθ(st−1, ot−1). The hidden state st defines a distri-
bution �zt ∼ qθ(zt | st) from which the latent code at this step is sampled. The
recurrent autoencoder also requires to learn the observation model pψ(ot | zt)
with parameters ψ (the decoder).

3.1 Learning Objective

For training this model, we derive a variational lower bound similar to the vari-
ational autoencoder [17] and PlaNet [11]. We maximize the data likelihood of
the image observations in the video,

ln p(o1:T ) = ln
�

t

�
p(ot | zt)p(zt | ot−1, st−1)dzt

≥
�

t

Eqθ(zt|ot−1,st−1) [ln p(ot | zt)]� �� �
−Lrec,t

−KL(qθ(zt | ot−1, st−1) || p(zt | ot−1, st−1))� �� �
LKL,t

,

(1)

where we assume an uninformed Gaussian prior with zero mean and unit diag-
onal covariance for the state-transition model p(zt | ot−1, st−1). By this approx-
imation, we can use techniques such as β-VAE and β-TCVAE to encourage the
latent code to disentangle the latent factors of variation in the training data.
The derivation of Eq. 1 can be found in the supplementary material.

The ELBO decomposes in a reconstruction Lrec,t and a complexity term

LKL,t per time step. We use the Laplace distribution 1
2b exp(−

|x−x̂|
b ) with fixed

scale parameter b as the output distribution of decoder. By this, the reconstruc-
tion loss can be written as Lrec,t =

1
b

� |xt − x̂t|, where xt denotes the ground
truth frame and x̂t is the predicted frame. The KL-divergence term can be de-
termined in closed form, since our encoder predicts a normal distribution with
diagonal covariance.

The final training objective for our VAE model is

LVAE = Lrec + LKL, (2)

where Lrec =
�

t Lrec,t and LKL =
�

t LKL,t.
Recent representation learning approaches have demonstrated that augmen-

tations to this loss function can improve the disentanglement of the represen-
tation into the latent factors of variation in the training data. β-VAE increases
the penalty to the KL-divergence term,

Lβ−VAE = Lrec + βLKL. (3)

Here, β > 1. β-TCVAE instead decomposes the KL-divergence term into three
components

LKL,t = KL(q(ot−1, zt | st−1) � p(ot−1 | st−1)q(zt | st−1))

+ KL(q(zt | st−1) �
�

i

q(zt,i | st−1)) +
�

i

KL(q(zt,i | st−1) � p(zt,i))

(4)
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and only increases the penalty to the total correlation KL(q(zt | st−1) �
�

i q(zt,i |
st−1)) which is mainly responsible for disentanglement as explained in [4].

Supervision of Latent Dimensions: We also explore training specific
dimensions of our latent representation in a supervised way. For selected prop-
erties, we normalize their values to the range [−10, 10] and impose an L1 loss
between them and specific dimensions of the latent code as an additional loss
term. The final training objective in this case is,

Lsup = Lunsup + λ
�

t

�

i

|ft,i − �zt,i|. (5)

Here, Lunsup is either LVAE or Lβ−VAE , ft,i is the value of the i-th property
to be supervised at time step t, and �zt,i is the corresponding dimension of the
latent code sample.

3.2 Network Structure

Our encoder is a recurrent neural network which receives the last hidden state
st−1, the latest image ot−1 and the first image o1 in the sequence. It outputs
a prediction for the state st of the next frame which we interpret and split
into the mean and diagonal log variances of a normal distribution qθ(zt|st) =
qθ(zt|st−1, ot−1). The decoder deconvolves samples from the encoder distribution
into a Laplace distribution over the pixels in the predicted image. In Fig. 1 we
give an overview and details of our network structure.

Besides the last frame, the encoder also takes in the first frame as input for
a better conditioning of the reconstruction of background and object shapes.
To remember information from previous steps, a GRU [6] layer is used for the
last layer of the encoder. Note that the current output of the GRU layer is also
its hidden state for the next step (unlike in an LSTM [13]). By this, the model
needs to store all information about dynamics in the latent code distribution.

The decoder takes the latent code sample from the encoder and assembles
it into the predicted next frame. It first generates a shared feature map via an
upsampling network. Then, three small nets convert the shared feature map into
optical flow, generated pixels and masks, respectively. The optical flow is used
to warp the last frame towards the next frame. Warped frame and generated
pixels are composed together via the masks to yield the predicted next frame.

For better image quality, adding skip connections between encoder and de-
coder or adding recurrency into the decoder are effective approaches [8, 20, 7].
However, these approaches circumvent the representational bottleneck in the la-
tent code and can store dynamics information in other layers. Since we aim at a
latent code that represents the appearance and dynamics information required
to predict the next frame, we don’t adopt these approaches.

Our model takes the first and current frame as input to predict the next
frame in each step. The current frame can be either the ground truth data or
the predicted one from the last step. At the beginning of the sequence, we feed
our model four consecutive ground truth frames to initialize the hidden state
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Fig. 2. Samples from our datasets. Row 1, 2, 3 are from the sliding set, the wall set
and the collision set, respectively.

of the recurrent encoder. Then, the system recursively uses the predicted image
from the last step to perform multi-step prediction.

4 Physical Scene Datasets

We evaluate our approach in videos of physical scenarios of increasing difficulty.
We employ the physics engine PyBullet to create three datasets. In the sliding
set, objects of various shapes and friction coefficients slide with various initial
speeds on a plane. The wall set shows collisions of a sliding object with a wall.
The collision set contains collision scenarios of two objects that slide into each
others. In the latter two, we also vary the density and the restitution coefficients
of objects. Example sequences for the datasets are shown in Fig. 2.

For each sequence, we record 10 frames with a rate of 10Hz. Besides, segmen-
tation masks and depth maps are saved, too. The objects in our dataset have
5 different shapes: cylinder, prism, cube, cone and pyramid. The ratios among
edges are fixed, but the scales of objects are changeable for the diversity of data.

Sliding Dataset: The sliding dataset describes a physics scene where an
object with various appearances and physical properties slides from left to the
right. We do not include sequences in which the object would fall over. Objects in
this dataset have 5 properties: shape, scale, friction coefficient, initial speed, and
initial position. Different sequences have different combination of these properties
which we choose from a finite set of discrete values per property. The set totally
has 26000 sequences including a training set with 20000 sequences, a validation
set with 3000 sequences, and a test set with 3000 sequences.

Wall Dataset: Similar to the sliding dataset, the objects in the wall dataset
also slide from left to the right. However, the object slides into a fixed wall in
the right of the scene. If the object is fast enough, it will hit the wall and bounce
back. In this dataset, objects may also fall over. We have 5 properties in this set:
shape, scale, material, initial speed, and initial position. Each material has its
own setting of density, restitution, friction, and color. Again we choose a discrete
set of possible values for each property. We have totally 10125 sequences in this
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Fig. 3. Prediction examples of β-TCVAE in different datasets. First row demonstrates
the ground truth frames. Second row shows the 1st (t = 5), 3rd, and 5th predicted
frames in three datasets.

set including 7425 sequenes in the training set, 1350 in the validation set and
1350 in the test set.

Collision Dataset: In the collision dataset, 2 objects slide into each other
from left and right. Both objects have their own settings of shapes, scales, ma-
terials, initial speeds and positions from a discrete set of values. This set has
25000 sequences in the training set, 2500 sequences in the validation set and
2500 sequences in the test set.

5 Experiments

We evaluate our video representation learning approach on our proposed datasets.
To measure the level of the latent code’s disentanglement we use the mutual in-
formation gap (MIG) proposed in [4]. We also measure the disentanglement of
a property separately by computing the mutual information gap for the single
property. Additionally, we assess the quality of the video prediction using the
peak signal-to-noise ratio (PSNR).

Experiments for Unsupervised Learning: We first assess unsupervised
learning with our approach and compare VAE, β-VAE [12] and β-TCVAE [4]
objectives for various β values. The models are trained to predict the remaining
six frames in each sequence given the first four ground truth frames as inputs.

To explore the relationship between the coefficient β and the level of disen-
tanglement, we evaluate a set of β values. In the sliding set, we set β to 1, 5, 9,
13, 17, 21, 25; in the wall and the collision set, β are set to 1, 6, 11, 16, 21, 26 and
1, 11, 21, 31, respectively. Each setting is trained 22 times in the sliding set and
12 times in the other sets. Each model is trained for 12000 iterations. We use
the Adam optimizer [16] with parameters β1 = 0.5, β2 = 0.999 and learning rate
6e−9. Batch size is set to 8. For the scale parameter of the decoder’s Laplace
distribution we empirically choose b = 0.0147. Schedule sampling [8] is applied
for training: The model is first trained to predict only one future step at the
beginning of training. Then we smoothly transition to full sequence prediction
from iteration 1000 to iteration 9000.

Some prediction examples of β-TCVAE are given in Fig. 3. The average
MIG curves are shown in Fig. 4 (a) (b) (c). We show means and 90% confidence
intervals of evaluated MIG values. For the sliding set and wall set, a higher β
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Fig. 4. MIG and performance reduction (average and 90% confidence intervals) for
unsupervised learning. In the sliding set and the wall set, β-TCVAE outperforms β-VAE
and successfully increase the average MIG. Besides, larger β leads to bigger performance
reduction in both approahces.

GT VAE β-VAE β-TCVAE GT VAE β-VAE β-TCVAE

Fig. 5. Predicted last frame of two sequences for different approaches.

helps to increase the average MIG in β-TCVAE. In contrast, β-VAE struggles
to improve it. For the most difficult collision set, β-TCVAE slightly improves
over β-VAE, while there is no obvious improvement over VAE (β = 1). Larger
β values limit the capacity of the model by forcing it to stay closer to the prior
which negatively influences the video prediction quality. This can be seen in
Fig. 4 (d) (e) (f) in the reduction in PSNR. We observe that the reduction for β-
TCVAE is smaller than for β-VAE in most cases. Fig. 5 shows the last predicted
frame in a video sequence by the different approaches.

To figure out which kinds of properties benefit from a larger β, we present
the MIGs for individual properties in Fig. 6. Both β-TCVAE and β-VAE can
disentangle some properties better like shapes in the sliding set or position in the
collision set. β-TCVAE achieves better results than β-VAE. However, the ap-
proaches struggle to disentangle dynamic-related properties like speed or friction.
To visualize the results of β-TCVAE and β-VAE, we select our best β-TCVAE,
β-VAE and VAE (β = 1) models and show latent traversals for shapes in the
sliding set in Fig. 7. For the traversals, we select the dimension of the latent code
that has the highest mutual information with the shape.

Experiments for Supervised Learning: Although unsupervised learning
in our model using the β-TCVAE objective can improve the disentanglement
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Fig. 6. Individual MIG of properties for unsupervised learning. Both β-TCVAE and
β-VAE work better for properties which have high influence on the reconstruction loss
like shape in the sliding sets and position in the collision set. β-TCVAE outperforms
β-VAE in such properties. For other properties they are comparable to VAE (β = 1).

of properties like shape, scale and position in our datasets, dynamics-related
properties like speed and friction are not well disentangled. In this section, we
analyze if supervision of some properties can be included into representation
learning and if the disentanglement of these properties can be improved.

We train our model in two ways: using the VAE (β = 1) objective and the
β-TCVAE objective with β = 31. We select dynamics-related properties for
supervision in each dataset, and add a supervised loss term for them as detailed
in Sec. 3.1. We set λ = 1

3×104 in our experiments and cap the log variance of the
latent code’s distribution from below at log σ2 = −10. We train each approach
12 times for 12000 iterations for all datasets. In the sliding set, we supervise
friction, speed and position. In the wall and the collision set, speed and position
are supervised. The settings of schedule sampling and the Adam optimizer are
the same as in the previous experiments.

We show the MIG graphs in Fig. 9. In (a) we observe that β-TCVAE success-
fully increases the average MIG in all datasets. Subfigures (b) and (d) demon-
strate that unlike in the unsupervised learning case, with supervision the model
can disentangle dynamic-related properties better in the sliding and collision
sets. However, the approach cannot improve the MIG for these properties in
the wall set as shown in (c). In addition, the supervised approach also achieves
higher MIG for some properties without supervision compared to the unsu-
pervised approach like the shape and the scale in (b). This may be due to the
reduction of the supervised properties information in the representation of unsu-
pervised properties. We also show latent traversals in Fig. 10 which compare the
results of β-TCVAE and VAE. Fig. 8 demonstrates predictions when dynamics-
related properties are changed by their corresponding latent codes in our model.
The model trained with the β-TCVAE objective demonstrates a noticable speed
change of the objects in this example, making the objects collide. We provide
further examples in the supplementary material and video.
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(a) β-TCVAE (b) β-VAE (c) VAE

Fig. 7. Latent traversals for the shape property in the sliding set. We manually modify
the value (given in row headers) of the dimension corresponding to the specific prop-
erty and show the predicted optical flows in the first 2 rows. The orig row shows the
prediction for the estimated value of the dimension. In the first 2 examples, the contour
changes from a triangle-like shape to a rectangular-like shape as we increase the value
in β-TCVAE and β-VAE models while this is not the case for standard VAE.

ground truth original prediction modified predicition

T
C
V
A
E

V
A
E

Fig. 8. Effect of latent code modification. We show predicted 1st and last frames from
β-TCVAE and VAE. In the last column, we modified the latent code dimension cor-
responding to the speed at t = 4 and show subsequent predicitions. While β-TCVAE
generates a collision event, there is only little change for VAE.

6 Conclusion

In this paper, we propose a recurrent variational autoencoder model that learns
a latent dynamics representation for video prediction. We use total correlation
to improve the disentanglement of the learned representation into the latent fac-
tors of variation in the training data. In this way, the model can discover several
properties related to the physics of the scenarios such as shape or positions of
objects. We also demonstrate that partial supervision of dynamics-related prop-
erties can be added which further improves the disentanglement of the represen-
tation. We evaluate our approach on a new dataset of three physical scenarios
with increasing levels of difficulty. In future work we plan to extend our dataset
to more complex scenarios and investigate other network architectures to further
improve the level of scene understanding.
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(a) Average MIG
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(b) Sliding - Detailed MIG
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(c) Wall - Detailed MIG
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(d) Collision - Detailed MIG

Fig. 9. MIG for supervised learning (mean and 90% confidence intervals) and unsu-
pervised learning for comparison (β-TCVAE). β-TCVAE achieves higher average MIG
compared to VAE. There is no significant MIG increase for the wall set for the su-
pervised properties (speed and position). In the sliding and collision sets, β-TCVAE
further increases the MIG of the supervised properties (friction, speed and position in
sliding set and speed and position in collision set).

β-TCVAE VAE β-TCVAE VAE

(a) Speed (b) Position

Fig. 10. Latent traversals for supervised learning. The brighter red, the faster. β-
TCVAE shows more obvious changes of brightness when we modify the correspond-
ing latent code dimension compared to the VAE case. For the property position, the
changes for β-TCVAE are also more significant than for VAE.
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