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Tübingen, Germany

In humans and in foveated animals visual acuity is highly
concentrated at the center of gaze, so that choosing where
to look next is an important example of online, rapid
decision-making. Computational neuroscientists have
developed biologically-inspired models of visual attention,
termed saliency maps, which successfully predict where
people fixate on average. Using point process theory for
spatial statistics, we show that scanpaths contain,
however, important statistical structure, such as spatial
clustering on top of distributions of gaze positions. Here,
we develop a dynamical model of saccadic selection that
accurately predicts the distribution of gaze positions as
well as spatial clustering along individual scanpaths. Our
model relies on activation dynamics via spatially-limited
(foveated) access to saliency information, and, second, a
leaky memory process controlling the re-inspection of
target regions. This theoretical framework models a form
of context-dependent decision-making, linking neural
dynamics of attention to behavioral gaze data.

Introduction

Research on visual attention models over the past 25
years has resulted in a number of computational models
(Borji & Itti, 2013)—using diverse computational

mechanisms—often capable of predicting fixation lo-
cations for a given input image with reasonable accuracy
(Itti, Koch, & Niebur, 1998; Kienzle, Franz, Schölkopf,
& Wichmann, 2009; Torralba, Oliva, Castelhano, &
Henderson, 2006; Tsotsos et al., 1995). The models
compute so-called saliency maps, highlighting those
parts of an input image that stand out relative to the
surrounding areas (Itti & Koch, 2001). However, the
human visual system is foveated, i.e., it is only able to
acquire high-resolution information from a very limited
region surrounding the current gaze position (the
fovea). Outside the foveal region, visual acuity falls off
rapidly, while the effects of visual crowding increase, so
that visual processing in the periphery has very limited
resolution (Jones & Higgins, 1947; Levi, 2008; Rose-
nholtz, Huang, & Ehinger, 2012).

As a consequence, to explore an entire visual scene we
must shift our gaze continually to new regions of interest
by producing rapid eye movements (saccades) about
three to four times per second (Findlay & Gilchrist,
2012). Thus, given the progress on mathematical models
of visual attention, there is an increasing need for
computationalmodels that bridge the gap between static
saliency maps—which a human observer’s visual system
can only know after exploring the entire image with its
fovea—and the dynamic principles of saccadic selection
underlying the generation of scanpaths by human
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observers. Moreover, part of the mismatch between
computer-generated saliency maps and actual gaze
patterns might be explained by properties of the
visuomotor system (Findlay &Walker, 1999). Recently,
a number of publications addressed specific aspects of
this problem, e.g., different roles for short and long
saccades (Tatler, Baddeley, & Vincent, 2006) or return
saccades (Ludwig, Farrell, Ellis, & Gilchrist, 2009;
Wilming, Harst, Schmidt, & König, 2013). Moreover,
behavioral biases might produce an important contri-
bution to eye-movement statistics (Tatler & Vincent,
2009). What is currently missing is an integrative
computational model that addresses the key aspects of
visuomotor control in a coherent theoretical framework.
We set out to develop one possible integrative model.

Spatial patterns of gaze positions carry rich infor-
mation on the processes of saccadic selection by the
human visual system, and this information can be
analyzed applying methods from the theory of spatial
point processes (Illian, Penttinen, Stoyan, & Stoyan,
2008; Barthelmé, Trukenbrod, Engbert, & Wichmann,
2013). Saliency maps aim at the prediction of two-
dimensional (2D) densities of gaze patterns (first-order
spatial statistics). However, saliency maps do not
contain the rich information about spatial interactions
inherent in experimental eye-tracking data: Fixations
are interdependent. Second-order statistics provide
quantitative tools to investigate interactions in gaze
patterns. Such interactions in turn may be used to gain
information about the processes (Law et al., 2009)
underlying the generation of neighboring gaze posi-
tions, which themselves are directly related to models of
saccadic selection.

We start with analyzing the spatial statistics of gaze
patterns using point process theory (Illian et al., 2008)
and show that gaze patterns are characterized by small-
scale clustering, in addition to the inhibition-of-return
mechanism (Klein, 2000) that is thought to represent the
dominant dynamical principle in extant attention
models (Itti & Koch, 2001). Next, since these results
provide strong constraints for possible neural mecha-
nisms of saccadic selection, we develop a dynamical
model for real-time attention allocation and gaze
control based on activation-based maps (Engbert, 2012;
Engbert, Mergenthaler, Sinn, & Pikovsky, 2011).
Finally, the model is compared against a range of
statistical null models using methods of spatial statistics.

Methods

Experiment

Stimulus material

A set of 30 randomly selected, natural landscape
photographs (color) was presented to human observers

on a 20 in. CRT monitor (Mitsubishi Diamond Pro
2070; frame rate 120 Hz; resolution: 1280 · 1024 pixels;
Mitsubishi Electric Corporation, Tokyo, Japan). Im-
ages were classified into two categories, natural object-
based scenes (image set 1: 15 images) versus images
showing abstract natural patterns (image set 2: 15
images). All images were presented centrally with gray
borders extending 32 pixels to the top/bottom and 40
pixels to the left/right of the image, since accuracy of
eye tracking systems falls off toward the monitor edges.

Task and procedure

Participants were instructed to position their heads
on a chin rest in front of a computer screen at a viewing
distance of 70 cm. Eye movements were recorded
binocularly using an Eyelink 1000 video-based eye-
tracker (SR-Research, Osgoode/ON, Canada) with a
sampling rate of 1000 Hz. Trials began with a black
fixation cross presented on gray background at a
random location within the image boundaries. After
successful fixation, the fixation cross was replaced by
the image for 10 s. Participants were instructed to
explore each scene for a subsequent memory test.
During the experiment, we presented 30 images twice.
Here we limit our analysis to the first presentation.

Participants

We recorded eye movements from 35 participants
(20 female, 15 male) aged between 17 and 36 years
(mean age: 24 years) with normal or corrected-to-
normal vision. Participants were recruited from the
University of Potsdam and from a local school (32
students, three pupils). All participants received credit
points or 8E for (about US $9.50) for participation.

Data preprocessing and saccade detection

We applied a velocity-based algorithm for saccade
detection (Engbert & Kliegl, 2003; Engbert & Mer-
genthaler, 2006). Saccades had a minimum amplitude
of 0.58 and exceeded the average velocity during a trial
by six standard deviations for at least 6 ms. Eye traces
between two successive saccades were tagged as
fixations with a mean fixation position averaged across
both eyes. Since eye position was determined by the
presentation of a fixation cross at the beginning of a
trial, we excluded all initial fixations from the data set
(image set 1: 525; image set 2: 525). Furthermore, we
removed fixations containing a blink or with a blink
during an adjacent saccade (image set 1: 580; image set
2: 588). Overall, the number of fixations remaining for
further analyses was 13,349 (image set 1) and 12,740
(image set 2).
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Spatial statistics

Gaze positions can be interpreted as realizations
from a spatial point process (Illian et al., 2008) that
can be represented as the random set of points N ¼
{x1, x2, x3,. . .} (also called a point pattern). The 2D
density (or intensity) k of the spatial point process is
given as the expectation or mean value of the number
of points in an observation window B, i.e., k¼E(n(B)),
where n(.) is a counting measure. A process is
statistically homogeneous (or stationary), if N and the
translated set Nx¼ {x1þ x, x2þ x, x3þ x,. . .} have the
same distribution for all x. For a stationary spatial
point process, the intensity k is constant over space.
For a nonstationary process, the intensity is a function
of location, k¼ k(x). For the computation of densities
from experimental data, we used kernel-density
estimates with bandwidth parameters chosen accord-
ing to Scott’s rule (Baddeley & Turner, 2005; Scott,
1992). To compute deviations between 2D densities
Pkl and Qkl at grid position (k, l), we used a symmetric
version of the Kullback-Leibler divergence derived
from information gain (Beck & Schlögl, 1993), i.e.,

DKLD ¼
1

2

X

k;l

Pkllog
Pkl

Qkl
þQkllog

Qkl

Pkl

! "
: ð1Þ

Second-order statistics (see also the illustrated notes
in the Appendix) are based on the pair density q(x1,
x2), which gives the probability q(x1, x2) dx1 dx2 of
observing points in each of two disks b1 and b2 with
linear dimensions dx1 and dx2, respectively. Point
patterns can be characterized by the pair density,
which is typically a function of the pair distance, i.e., q
(x1, x2) ¼ q(r) with r ¼ jjx1–x2jj, for two arbitrary
realizations x1 and x2. Using a kernel-based method, a
estimator for the pair density can be written as

q̂ðrÞ ¼
X6¼

x1;x2!W

kðjjx1 % x2jj % rÞ
2prAjjx1%x2jj

; ð2Þ

where k(.) is an appropriate kernel and Ajjx1%x2jj
denotes an edge correction at distance jjx1 – x2jj
(Baddeley & Turner, 2005). For numerical computa-
tions we used the Epanechnikov kernel (Illian et al.,
2008), i.e.,

kðxÞ ¼
3

4h
1% x2

h2

 !

; for % h & x & h

0; otherwise

8
><

>:
ð3Þ

The problem of choosing the bandwidth h appro-
priately is frequently discussed in the literature (Illian et
al., 2008). The bottom line from this discussion is that
the behavior of the estimator should be analyzed over a

range of bandwidths. We will run such an analysis
below (Figure 2).

The pair correlation function g(r) is a normaliza-
tion of the pair density with respect to first-order
intensity k̂, so that the estimator for the pair
correlation is given by ĝ(r) ¼ q(r) / k̂2. The
interpretation of the pair correlation function for a
given point pattern is straightforward. For a random
pattern without clustering, the pair correlation
function is ĝ(r) ’ 1 across the full range of distances
r. If ĝ(r) . 1, then pairs of fixations are more
abundant than on average at distance r. If ĝ(r),1,
then pairs of fixations are less abundant than on
average at a distance r. Thus, the pair correlation
function ĝ(r) measures how selection of a particular
point location (i.e., fixation position) is influenced by
other fixations at distance r.

Using the inhomogeneous pair correlation function
ginhom(r), we can remove the first-order inhomogeneity
from the second-order spatial statistics, i.e.,

ĝinhomðrÞ ¼
X6¼

x1;x2!W

1

k̂ðx1Þk̂ðx2Þ
kðjjx1 % x2jj% rÞ

2prAjjx1%x2jj
:

ð4Þ
Estimation of ĝinhom(r) involves two steps: First, we

estimated the overall intensity k̂(x) for all fixation
positions obtained for a given scene. In this procedure
we borrow strength from the full set of observations to
obtain reliable estimates of the inhomogeneity. Second,
we computed the pair correlation function from a single
trial with respect to the inhomogeneous density of the
full data set.

In case of a given pair correlation function ĝ(r), the
scalar quantity (Illian et al., 2008)

Dg ¼
Z ‘

0
ðĝðrÞ % 1Þ2dr; ð5Þ

denoted as PCF deviation in the following, serves as a
useful test statistic that quantifies the deviations from
randomness for a given point pattern with inhomoge-
neous density k̂(x). The integral in Equation (5) was
evaluated numerically for pair distances r between 0.18
and 58 (image set 1 and 2) and between 0.18 and 38 (Le
Meur, Le Callet, Barba, & Thoreau [2006] data; see
below).

Results

We conducted an eye-tracking experiment on scene
viewing with 35 human observers using 15 object-based
natural scenes (image set 1). Resulting gaze data were
evaluated using first- and second-order spatial statis-
tics; we found that data exhibit unexpected spatial
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aggregation (or clustering). We reproduced this finding
for a set of 15 abstract natural patterns (image set 2)
and for an external dataset (Le Meur et al., 2006) that
was made publicly available (Bylinskii, Judd, Durand,
Oliva, & Torralba, 2012). Based on these results, we
developed a dynamical model for saccadic selection
that was evaluated by the spatial-statistics approach
introduced in this section.

Spatial statistics and pair correlation function

We began by numerically computing the spatial (2D)
density of gaze positions from experimental data

collected for image set 1 (Figure 1a). Fixation positions
are indicated by red dots (a total of 930 fixations from
35 observers for image #2). Densities were computed
using a 2D kernel density estimator (Baddeley &
Turner, 2005; R Core Team, 2013; see Methods) and
are visualized by gray shading in the plot. The
bandwidth parameter hdensity for the kernel density
estimation was computed according to Scott’s rule
(Scott, 1992; range from 1.88 to 2.28 for h over all
images from image set 1). The obtained 2D density
k̂(x,y) is inhomogeneous because of the dependence on
position (x, y). A representative sample trajectory from
a single trial is given in Figure 1d, where the second and
last fixation of the scanpath is highlighted by white

Figure 1. Analysis of pair correlation functions for experimental gaze sequences (image set 1) and for computer-generated surrogate

data. (a) Experimental data of gaze positions from human observers (red) and estimated intensity from kernel density estimate (gray

levels) for image #2. (b, c) Realizations of gaze positions generated by inhomogeneous and homogeneous point processes,

respectively. (d, e) Typical single-trial fixation sequences from experiment (red) and inhomogeneous point process (yellow). (f)

Kullback-Leibler divergence (KLD) indicates that the inhomogeneous point process approximates the experimental 2D density of gaze

positions. (g) Pair correlation functions (PCFs) for experimental data (single trials: light gray; single trial from (d): black; averaged over

trials: red). (h) Mean PCFs for experimental data, inhomogeneous and homogeneous Poisson process. (i) The PCF deviation shows

that the experimental data are spatially correlated, while the two surrogate datasets fail to reproduce this statistical pattern.
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color and by their serial numbers. The first fixation was
omitted, since all trials started at a random position
within an image determined by our experimental
procedure (see Methods).

The pair correlation function g(r) gives a quantita-
tive summary of interactions in fixation patterns by
measuring how distance patterns between fixations
differ from what we would expect from independently
distributed data (see Appendix). A value of g(r) above 1
for a particular distance r indicates clustering, meaning
that there are more pairs of points separated by a
distance r than we would expect if fixation locations
were statistically independent.

For the estimation of the pair correlation function,
short sequences of gaze positions from single experi-
mental trials were considered. However, spatial inho-
mogeneity of the 2D density was taken into account.
To obtain a reliable estimate of the spatial inhomo-
geneity, the 2D density was estimated from the full
data-set (Figure 1a) of all fixations on a given image
taken from all participants and trials. It is important to
note, however, that in the computation of the kernel
density estimate k̂(x) used for the inhomogeneous pair
correlation function, Equation (4), an optimal band-
width parameter h is needed to avoid two possible
artifacts: First, if h is very small, then spatial
correlations might be underestimated due to overfitting
of the inhomogeneity of the density. Second, if h is too
large, then spatial correlations might be overestimated,
since first-order inhomogeneity is not adequately
removed from the second-order spatial statistics. We
solved this problem by computing the PCF deviation
Dg for the inhomogeneous point process for varying
values of the bandwidth h (Figure 2). Since the
inhomogeneous point process generates uncorrelated

fixations, i.e., gtheo(r) ¼ 1, the optimal bandwidth for
the dataset corresponds to a minimum of the PCF
deviation Dg (quantifying the deviation from the ideal
value g(r)¼ 1). For image set 1, the optimal value was
estimated as ĥ1 ¼ 4.08 (Figure 2a).

Based on this density estimate, we can compute the
inhomogeneous pair correlation function ginhom(r), in
which first-order inhomogeneity is removed from the
second-order spatial correlations (see Methods). As a
result, we obtained pair correlations from individual
trials (Figure 1g, gray lines). Deviations from ginhom(r)
’ 1 indicate spatial clustering at a specific distance r.
The mean pair correlation function ḡinhom(r) provides
evidence for clustering at small spatial scales with r ,
48 (Figure 1g, red line). Such a scale is greater than the
foveal zone (r , 28) and might provide an estimate of
the size of the effective perceptual window in free scene
viewing. This result is compatible with earlier findings
that the zone of active selection of saccade targets
extends beyond the fovea into the parafovea up to
eccentricities of 48 (Reinagel & Zador, 1999).

Next, we carried out the same numerical computa-
tions for two sets of surrogate data. The surrogate data
were generated to test the null hypotheses of complete
spatial randomness, both for an inhomogeneous point
process with position-dependent intensity k(x) and for
a homogeneous point process with constant intensity
k0. For the inhomogeneous point process, we sampled
from the estimated intensity k̂(x) (Figure 1b), whereas
a constant intensity k̂0, obtained from spatial averag-
ing, was used for the homogeneous point process
(Figure 1c). Both surrogate datasets are important for
checking the reliability of the computation of the pair
correlation function for the original data (Figure 1g).
First, the inhomogeneous point process gives a flat

Figure 2. Optimal bandwidth parameter for inhomogeneous pair correlation function (PCF) for three different image sets. For

simulated data from the inhomogeneous point process, the PCF deviation Dg, Equation (5), was computed as a function of the

bandwidth h for the underlying kernel density estimate. The optimal bandwidth corresponds to the position of the minimum of Dg. (a)

For image set 1, ĥ1¼ 4.08. (b) For image set 2, ĥ2¼ 4.68. (c) For the Le Meur dataset, ĥ3¼ 2.28, due to a much smaller presentation

display compared with our experiments.
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mean correlation function with g(r) ’ 1 (Figure 1h),
which demonstrates the absence of clustering (except
for the divergence at very small scales as an effect of
numerical computation issues). Thus, the spatial
correlations in the experimental data are not a simple
consequence of spatial inhomogeneity. Second, the
result for the homogeneous point process (Figure 1h) is
the same as for the inhomogeneous point process,
which indicates that the correction for inhomogeneity
needed for computations in Figure 1g does not
produce unwanted artefacts due to possible overfitting
of the spatial inhomogeneities. We conclude that our
experimental data give a clear indication for spatial
clustering at length-scales smaller than 48 of visual
angle. Additionally, we checked the hypothesis that
this effect of spatial clustering might be due to saccadic
undershoot and subsequent short correction saccades
by excluding all fixations with durations shorter than
200 ms. A related analysis of the PCF indicates no
qualitative differences from the original data (Figure
1h).

Results reported so far were obtained for a single,
representative image. Over the full set of 15 images, we
analyzed the 2D densities using a symmetrized form of
the Kullback-Leibler divergence (KLD) based on the
concept of information gain (Beck & Schlögl, 1993).
For the experimental data, we applied a split-half
procedure (first half of participants vs. second half of
participants) and computed the KLD between the two
experimental densities. The corresponding KLD values
demonstrate that the inhomogeneous point process
reproduces the 2D density (Figure 1f), while the
homogeneous point process clearly fails to approximate
the systematic inhomogeneity in the image. Model type
had a significant effect on KLD, v2(2)¼105.4, p , 0.01.
Contrasts revealed that (1) spatially inhomogeneous
data-sets were different from the homogeneous data, b
¼ 0.319, t(28) ¼ 22.85, p , 0.01, and that (2)
experimental data were significantly different from
inhomogeneous surrogate data, b¼ 0.062, t(28)¼ 2.56,
p¼ 0.016.

Both sets of surrogate data were submitted to an
analysis of the pair correlation function, where the
deviations from g(r) ’ 1 were computed to obtain a
PCF measure indicating the amount of spatial corre-
lation averaged over distances (see Methods). Results
indicate that the surrogate data produce—as de-
signed—uncorrelated gaze positions (low PCF devia-
tion), while the experimental data by human observers
exhibit spatially correlated gaze positions (Figure 1i).
Model type had a significant effect on PCF, v2(2)¼
98.4, p , 0.01.

To investigate the reliability of our finding of spatial
clustering on short-length scales during natural scene
viewing, we investigated two other datasets using the
same procedures with an optimal bandwidth adjusted

for each dataset (Figure 2a–c). First, we compared the
mean pair correlation functions per image for natural
object-based scenes (image set 1; Figure 3a, d) and
abstract natural patterns (image set 2; Figure 3b, e).
While variability of the pair correlation function might
be greater for the abstract scenes than for the object-
based scenes (Figure 3d, e; gray lines) the mean pair
correlation functions for the images sets (Figure 3d, e;
red lines) are very similar. This result indicates that the
clustering on short length scales is a robust phenom-
enon, which does not seem to depend sensitively on
scene content. Second, we analyzed a publicly available
dataset (Le Meur et al., 2006) from the MIT saliency
benchmark (Bylinskii et al., 2012; Judd, Durand, &
Torralba, 2012) consisting of 40 participants who
viewed 27 color images for 15 s. For these data, the
spatial scale of the presentation display for the images
(Figure 3c) was considerably smaller than in our
experiment. Consequently, we observed pair correla-
tion functions that indicate clustering on smaller scales
(, 1.58, Figure 3f). Thus, while scene content does not
seem to exert a strong influence on spatial correlations,
spatial scale of the image modulates the spatial scale of
the clustering of fixations.

We conclude that second-order spatial statistics
obtained for the experimental data are significantly
different from stochastic processes implementing the
assumption of spatial randomness. Furthermore, the
mere presence of spatial inhomogeneity in the experi-
mental data cannot explain by itself the observed
spatial correlations, which is evident in the results for
the inhomogeneous point process. While inhibition-of-
return (Klein, 2000) has been discussed frequently as
one of the key principles added to saliency maps for
saccadic selection (Itti & Koch, 2001), spatial clustering
of gaze positions is an additional statistical property
that is highly informative on mechanisms of gaze
planning, but has been neglected so far. Next, we use
these results to develop and test a dynamical model for
saccade generation that uses activation field dynamics
to reproduce spatial statistics of first- and second-order.

A dynamical model of saccade generation

A key assumption for the model we propose is the
combination of two neural activation maps to
implement dynamical principles for saccadic selection.
First, a fixation map f(x, y; t) is keeping track of the
sequence of fixations by inhibitory tagging (Itti &
Koch, 2001). Second, an attention map a(x, y; t) that
is driven by early visual processing controls the
distribution of attention. Physiologically, the as-
sumption of the dynamical maps is supported by the
presence of an allocentric motor map of visual space
in the primate entorhinal cortex (Killian, Jutras, &
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Buffalo, 2012). Moreover, this map is spatially
discrete (Stensola et al., 2012) and serves as a
biological motivation for the fixation and attention
maps in our model.

We implemented activation maps for attention and
fixation (inhibitory tagging) on a discrete square lattice
of dimension L · L. Lattice points (i, j) have
equidistant spatial positions (xi, yj) for i, j ¼ 1, . . ., L,
where xi¼x0þ iDx and yj¼y0þ jDy. As a consequence,
attention and fixation maps are implemented in
spatially discrete forms, {aij (t)} and {fij(t)}, respec-
tively. For the numerical simulations, time was
discretized in steps of Dt¼ 10 ms with t¼ k · Dt and k
¼ 0, 1, 2, . . ., T.

If the observer’s gaze is at position (xg, yg) at time t,
then a position-dependent activation change Fij(xg, yg)
and a global decay proportional to the current
activation –xfij(t) are added to all lattice positions to
update the activation map at time t þ 1, i.e.,

fijðtþ 1Þ ¼ Fijðxg; ygÞ þ ð1% xÞfijðtÞ; ð6Þ

where the activation change Fij(xg, yg) ” Fij(t) is
implicitly time-dependent because of the time-depen-
dence of gaze positions, xg(t), yg(t). The constant x , 1
determines the strength of the decay of activation. For
the spatial distribution of the activation change Fij(t)

we assume a Gaussian profile, i.e.,

FijðtÞ ¼
R0ffiffiffiffiffiffi
2p
p

r0

exp %ðxi % xgðtÞÞ2 þ ðyj % ygðtÞÞ2

2r2
0

 !
;

ð7Þ
with the free parameters r0 and R0 controlling the
spatial extent of the activation change and the strength
of the activation change, respectively. In our model, the
build-up of activation in the fixation map is a
mechanism of inhibitory tagging (Itti & Koch, 2001) to
reduce the amount of refixations on recently visited
image patches.

For the attention map aij(t) we assume similar
dynamics, however, the width of Gaussian activation
change Aij(t) is assumed to be proportional to the static
saliency map {/ij}. The updating rule for the attention
map is given by

aijðtþ 1Þ ¼
/ijAijðtÞX

kl

/klAklðtÞ
þ ð1% qÞaijðtÞ; ð8Þ

with decay constant q' 1. As a result, the saliency
map /ij is accessed locally through a Gaussian aperture
with size r1 and scale parameter R1, similar to Equation

Figure 3. Comparison of the mean pair correlation functions for three different image sets: (a) Natural object-based scenes. (b)

Abstract natural patterns. (c) Natural scenes from the Le Meur et al. dataset. Mean pair correlation function are similar for object-

based (d) and abstract (e) natural scenes. The presentation of images on a smaller display in the Le Meur dataset compared to our

experiments (f) resulted in a smaller length scale of spatial clustering.
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(7). Using the local read-out mechanism, information is
provided for the attention map to identify regions of
interest for eye guidance.

The fixation map monitors recently visited fixation
locations by increasing local activation at the corre-
sponding lattice points (Engbert et al., 2011; Freund &
Grassberger, 1992). If the observer’s gaze position is at
a position corresponding to lattice position (i, j), then a
position-dependent activation change Fij in the form of
a Gaussian profile is added locally in each time step,
while a global decay proportional to the current
activation is applied to all lattice positions. The width
of the Gaussian activation r0 and the decay x are the
two free parameters controlling activation in the
fixation map. For the attention map aij(t) we assume
similar dynamics, including local increase of activation
with size r1 and global decay q. However, the amount
of activation change Aij is assumed to be proportional
to the time-independent saliency map /ij, so that the
local increase of activation isþ /ijAij /

P
klAkl.

Our modeling assumptions are related to specific
hypotheses on model parameters. We expect that the
size of the Gaussian profile for the attention map is
larger than the corresponding size of the fixation map,
r1 . r0, since attention is the process driving eye
movements into new regions of visual space, while the
inhibitory tagging process should be more localized. A
similar expectation can be formulated on the decay
constants. Since inhibitory tagging is needed on a
longer time scale as a foraging facilitator, we expect a
slower decay in the fixation map compared to the
attention map, i.e., x , q.

Next, we assume that, given a saccade command at
time t, both maps are evaluated to select the next
saccade target. First, we apply a normalization of both
attention and fixation maps as a general neural
principle to obtain relative activations (Carandini &
Heeger, 2011). Second, we introduce a potential
function as the difference of the normalized maps,

uijðtÞ ¼ %
aijðtÞ
$ %k
X

kl

aklðtÞ½ )k
þ

fijðtÞ
$ %c
X

kl

fklðtÞ½ )c
; ð9Þ

where the exponents k and c are free parameters.
However, a value of k¼ 1 is a necessary boundary
condition to obtain a model that accurately reproduces
the densities of gaze positions. In a qualitative analysis
of the model (see Appendix), pilot simulations showed
that c is an important control parameter determining
spatial correlations, where c ’ 0.3 was used to
reproduce spatial correlations observed in our experi-
mental data.

The potential uij(t), Equation (9), can be positive or
negative at position (i, j). Lattice positions with a
positive potential, uij . 0, are excluded from saccadic

selection, since corresponding regions were visited
recently with high probability. Among the lattice
positions with negative activations, we implemented
stochastic selection of saccade targets proportional to
relative activations, also known as Luce’s choice rule
(Luce, 1959). We implemented this form of stochastic
selection from the set S ¼ fði; jÞjuij , 0g, where the
probability pij(t) to select lattice position (i, j) at time t
as the next saccade target is given by

pijðtÞ ¼ max
uijðtÞX

ðk;lÞ!S
uklðtÞ

; g

0

BB@

1

CCA: ð10Þ

The noise term g is an additional parameter
controlling the amount of noise in target selection.

Numerical simulations of the model

Our computational modeling approach to saccadic
selection has been developed to propose a minimal
model that captures the types of spatial statistics
observed in experimental data. After fixing model
parameters, all that is needed to run the model on a
particular image is a 2D density estimate of gaze
patterns (from experimental data) or a corresponding
2D prediction from one of the available saliency models
(Borji & Itti, 2013). To reduce computational com-
plexity in the current study and to exclude potential
mismatches between data and model simulations due to
the saliency models, we run the model on experimen-
tally realized densities of gaze positions, which is
equivalent to assuming an exact saliency model.
However, our modeling approach is compatible with
future dynamical saliency models that provide time-
and position-dependent saliency during a sequence of
gaze shifts, thus our model introduces a general
dynamical framework and is not tied to using empirical
data.

The numerical values of the five model parameters
were estimated from experimental data recorded for the
first five images of natural object-based scenes (image
set 1) using a genetic algorithm approach (Mitchell,
1998; see Appendix, Table 1). The remaining 10 images
of image set 1 were used for model evaluations—as the
15 images of image set 2. The objective function for
parameter estimation was based on evaluation of first-
order statistics (2D density of gaze positions) and the
distribution of saccade lengths. In agreement with our
first expectation, the estimated optimal values for the
spatial extent of the inhibitory tagging process in the
fixation map, r0¼ 2.28, is considerably smaller than the
corresponding size of the build-up function for the
attention map, r1¼ 4.98. Our second expectation was
related to the decay constants, which turned out to be
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larger for the attention map, q¼ 0.066, than for the
fixation map, x¼ 9.3 · 10%5, so q was greater than x,
again as expected. Finally, the noise level in the target
map is g ¼ 9.1 · 10%5.

An example for the simulation of the model
demonstrates the interplay between inhibitory pro-
cesses from the fixation map and the attention map
during gaze planning (Figure 4). The fixation map
builds up activation at fixated lattice positions (yellow
to red), while the attention map identifies new regions
of interest for saccadic selection (blue). These simula-
tions show on a qualitative level how the model
implements the interplay of the assumed mechanisms of

inhibitory tagging and saccadic selection of gaze
positions (see Supplementary Video).

To investigate model performance qualitatively, we
ran simulations for one image (image #6, 930 fixation,
Figure 5a) and obtained a number of fixations similar
to the experimental data (882 fixations, Figure 5b).
Single-trial scanpaths from experiments and simula-
tions are shown additionally in Figure 5a and 5b,
respectively). The resulting distributions of saccade
lengths indicate that our dynamical model is in good
agreement with experimental data, while the two
surrogate datasets (homogeneous and inhomogeneous
point processes) fail to reproduce the distribution
(Figure 5c). An analysis of the pair correlation

Figure 4. Illustration of a simulated sequence of gaze positions and the activation dynamics of the model. (a) The density of gaze
positions (empirical saliency) is used as a proxy for a computed saliency map that drives activation in the attention map. (b–f)
Sequence of snapshots of the potential (blue¼ low, yellow¼ high). Note that blue color indicates density of fixations in (a), while it
refers to low values of the potential in (b)–(f).

Parameter Symbol Mean Error Min Max Reference

Fixation map
Activation span [8] r0 2.16 0.11 0.3 10.0 Eq. (7)
Decay log10 x –4.03 0.28 –5.0 –1.0 Eq. (6)

Attention map
Activation span [8] r1 4.88 0.25 0.3 10.0 Eq. (8)
Decay log10 q –1.18 0.08 –3.0 –1.0 Eq. (8)

Target selection
Additive noise log10 g –4.04 0.07 –9.0 –3.0 Eq. (10)

Table 1. Model parameters.
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functions indicates that the spatial correlations present
in the experimental data were approximated by the
dynamical model (Figure 5d), however, the two
surrogate datasets representing uncorrelated sequences
by construction produce qualitatively different spatial
correlations.

To investigate the influences of saccade-length
distributions on pair correlations, we constructed
another statistical control model that had access to the
image-specific saccade-length distribution. It is impor-
tant to note that this model was not introduced as a
competitor to the dynamical model, which is able to
predict saccade-length distributions. The statistical
control model approximated the distribution of saccade
lengths l and 2D densities of gaze positions x by
sampling from the joint probability distribution p(x, l)
under the assumption of statistical independence of
saccade lengths and gaze positions, i.e., p(x, l)¼
p(x)p(l). This model, by construction, approximates the
distribution of saccade lengths and 2D density of gaze
positions (Figure 5c). The simulations indicate, how-

ever, that even the combination of inhomogeneous
density of gaze positions and non-normal distribution
of saccade lengths used by the statistical control model
cannot explain spatial correlations in the experimental
data characterized by the pair correlations function
(Figure 5d).

For the statistical analysis of model performance on
new images, we carried out additional numerical
simulations. We fitted model parameters to data
obtained for the first five images only (see above) and
predicted data for the remaining 10 images by the new
simulations to isolate parameter estimation from model
evaluation (calculating test errors rather than training
errors).

Our simulations show that the dynamical model
predicted the 2D density of gaze positions accurately
(Figure 6a). The obtained KLD values for the model
(blue) were comparable to KLD values calculated by
the split-half procedure for the experimental data (red)
and to the KLD values obtained for the statistical
control models (green ¼Homogeneous point process,

Figure 5. Distribution of saccade lengths and pair correlation functions from model simulations (image #6). (a) Experimental

distribution of gaze positions (red dots) and a representative sample trial (red lines). (b) Corresponding plot of simulated data

obtained from our dynamical model (blue dots). A single-trial simulation is highlighted (blue line). (c) Distributions of saccade lengths

for experimental data (red), dynamical model (blue), homogeneous point process (green), inhomogeneous point process (yellow), and

a statistical control model (magenta). (d) Pair correlation functions for the different models. The dynamical model (blue line) produces

spatial correlations similar to the experimental data (red line).
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yellow ¼ Inhomogeneous point process, magenta¼
Control model). Model type had a significant effect on
KLD, v2(4)¼ 109.4, p , 0.01. Post hoc comparisons
indicated significant effects between all models (p ,
0.01) except for the comparison between experimental
data and the dynamical model (p ¼ 0.298) and for the
comparison between dynamical model and inhomoge-
neous point process (p ¼ 0.679). In an analysis of the
PCF estimated from the same set of simulated data
(Figure 6b), the dynamical model (blue) produced
deviations from an uncorrelated point process that are
in good agreement with the experimental data (red).
Model type had a significant effect on PCF deviation,
v2(4)¼ 91.6, p , 0.01. Post hoc comparisons indicated
significant effects for all comparisons (p , 0.01) except
for the comparison between experimental data and the
dynamical model (p¼ 0.990) and between homoge-
neous and inhomogeneous point processes (p¼ 0.996).

To check the reliability of the results, we performed
all corresponding calculations for the images showing
abstract natural scenes (image set 2). For these
simulations, we used the set of model parameters fitted
to the first five images of image set 1, which
corresponds to the hypothesis that scene content
(object-based scenes vs. abstract natural patterns) does
not have a strong impact on spatial correlations in the
scanpath data. For the simulated densities (Figure 6c),
we reproduced the statistical results from image set 1.
Again, model type had a significant effect on KLD,
v2(4)¼ 162.6, p , 0.01. Post hoc comparisons indicated
significant effects between all models (p , 0.01) except
for the comparison between experimental data and the
dynamical model (p¼ 0.251), for the comparison
between dynamical model and inhomogeneous point
process (p ¼ 0.784), and for the comparison between
inhomogeneous point process and experimental data (p
¼ 0.012). For the pair correlation function (Figure 6d),
model type had a significant effect, v2(4)¼ 140.6, p ,
0.01, and post hoc comparisons indicated significant
effects for all comparisons (p , 0.01) except for the
comparison between experiment and dynamical model
(p¼ 0.453) and between homogeneous and inhomo-
geneous point processes (p ¼ 0.700). Thus the main
statistical results obtained from image set 1 were
reproduced for images of abstract natural patterns
(image set 2). These results lend support to the
hypothesis that scene content does not have a strong
influence on second-order spatial statistics of gaze
patterns.

Thus, the dynamical model performed better than
any of the statistical models in predicting the average
pair correlations. Although one of our statistical
control models generated data by using image-specific
saccade-length information in addition to the 2D
density of gaze position, it could not predict the spatial
correlations as accurately as the dynamical model that

was uninformed about the image-specific saccade-
length distribution.

Discussion

Current theoretical models of visual attention
allocation in natural scenes are limited to the prediction
of first-order spatial statistics (2D densities) of gaze
patterns. We were interested in attentional dynamics
that can be characterized by spatial interactions (as
found in the second-order statistics). Using the theory
of spatial point processes, we discovered that gaze
patterns can be characterized by clustering at small
length scales, which cannot be explained by spatial
inhomogeneity of the 2D density. We proposed and
analyzed a model based on dynamical activation maps
for attentional selection and inhibitory control of gaze
positions. The model reproduced 2D densities of gaze
maps (first-order statistics) and distributions of saccade
lengths as well as pair correlations (second-order
spatial statistics).

Spatial statistics

While research on the computation of visual saliency
has been a highly active field of research (Borji & Itti,
2013), there is currently a lack of computational models
for the generation of scanpaths on the basis of known
saliency. Inhibition-of-return (Klein, 2000) has been
proposed as a key principle to prevent continuing
refixation within regions of highest saliency. However,
our analysis of the pair correlation function demon-
strates that saccadic selection at small length scales is
dominated by spatial clustering. Thus, our findings are
highly compatible with the view that inhibition-of-
return cannot easily be observed in eye-movement
behavior in natural scene viewing experiments (Smith &
Henderson, 2011). However, the spatial correlations
can be exploited to investigate dynamical rules under-
lying attentional processing in the visual system. Our
experimental data show a clear effect of spatial
clustering for length scales shorter than about 48.
However, these results are incompatible with the
current theory of saliency-based attention allocation
combined with an inhibition-of-return mechanism.
Future simulations will investigate the predictive power
of the model when saliency models are used as input.

Modeling spatial correlations

In a biologically plausible computational model of
saccade generation, a limited perceptual span needs to
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be implemented for attentional selection (Findlay &
Gilchrist, 2012). We addressed this problem by
assuming a Gaussian read-out mechanism with local
retrieval from the saliency map through a limited
aperture, analogous to the limited extent of high-
fidelity information uptake through the fovea. We used
the experimentally observed density of fixations as a
proxy for visual saliency.

First, our results indicate that a very limited
attentional span (Gaussian with standard deviation
parameter ;4.98) of about twice the size of the
activation mechanism for tracking the gaze positions
(;2.28) is sufficient for saccade planning. This atten-

tional span is efficient, however, since the combination
of fixation and attention maps in our model actively
drives the model’s gaze position to new salient regions
computed via normalization of activations (Carandini
& Heeger, 2011).

Second, our model correctly predicted spatial
clustering of gaze positions at small-length scales. The
pair correlation function indicates that there is a
pronounced contribution by refixations very close to
the current gaze position. This effect is compatible with
the distribution of saccade lengths, however, a statis-
tical control model that generated data from statisti-
cally independent probabilities of 2D density and

Figure 6. Model predictions on images not used for parameter estimation. Predicted data were generated from the dynamical model

for the 10 images of image set 1 not used for parameter estimation (a, b) and for all 15 images from image set 2 (c, d). (a) Modell

simulations of the KLD for experiments on image set 1 (10 images not used for model parameter estimation) and dynamical model

and three different statistical models. For the experimental data, a split-half procedure was applied to compute KLD. (b)

Corresponding PCF deviations for the same model-generated and experimental data on image set 1. (c) KLD measures for image set 2.

(d) PCF deviation for image set 2.
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saccade lengths could not reproduce the pair correla-
tions adequately.

Implications for computational models of active
vision

During active vision, our visual system relies on
frequent gaze shifts to optimize retinal input. Using a
second-order statistical analysis we demonstrated that
spatial correlations across scanpaths might provide
important constraints for computational models of eye
guidance. In our dynamical model, spatial clustering at
small scales is the result of two principles. First, the
fixation map is driven by an activation function with a
small spatial extent (;2.58). Second, the time-scale of
activation build-up in the fixation map is slow
compared to the build-up of activation in the attention
map. Both mechanisms permit refixations at positions
very close to the current gaze position before the system
moves on to new regions of visual space.

Limitations of the current approach

The current work focused on spatial statistics of gaze
patterns and we proposed and analyzed dynamical
mechanisms of eye guidance in scene viewing. In our
model, a Gaussian read-out mechanism for the static
empirical saliency map was implemented as a simpli-
fication. A more biologically plausible combination of
our model of eye guidance with a dynamical saliency
model (Borji & Itti, 2013) is a natural extension of the
current framework, and the development of such a
model is work in progress in our laboratories. Clearly,
the current modeling architecture is not limited to input
from static saliency maps.

Another simplification is related to the timing of
saccades (Nuthmann, Smith, Engbert, & Henderson,
2010). In the current version of our model, we
implemented random timing and sampled fixation
durations randomly from a predefined distribution.
More adequate models of fixation durations, however,
will need to include interactions of processing difficulty
between fovea and periphery (Laubrock, Cajar, &
Engbert, 2013).

Supplemental information

This work includes a supplemental video animation
of the model simulations. Experimental data on
fixation patterns and computer code for statistical
analysis and model simulations will be made available
via the Potsdam Mind Research Respository (PMR2,
http://read.psych.uni-potsdam.de/).

Keywords: scene perception, eye movements, atten-
tion, saccades, modeling, spatial statistics
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Appendix

Estimation of model parameters

Some of the free parameters of the model were set
to fixed values to reduce the number of free
parameters and to facilitate parameter estimation.
First, saccade timing was outside the primary scope of
the current work. Time intervals between two deci-
sions for saccadic eye movements are drawn from a
gamma distribution of eighth order (Trukenbrod &
Engbert, 2014) with a mean value of l ¼ 275 ms.
Second, we assumed that the build-up of activation is
considerably faster in the attention map than in the
fixation map by choosing R0 ¼ 0.01 and R1 ¼ 1, i.e.,
R1/R0 ; 100.

Model parameters were estimated by minimization
of a loss function combining information on the
densities of gaze positions and of saccade lengths,

Kðr0; r1;x; q; gÞ ¼
X

i

ðpei % psi Þ
2 þ

X

j

ðqej % qsj Þ
2;

ðA11Þ
where pe and ps are the experimental and simulated
distributions of pair distances between all data points

for a given image and qe and qs are the distributions of
saccade lengths for experimental and simulated data,
respectively. The minimum of the objective function K
was determined by a genetic algorithm approach
(Mitchell, 1998) within a predefined range (Table 1).
Mean values and standard errors of the means were
computed from five independent runs of the genetic
algorithm.

Qualitative analysis of the model

The pair correlation function was the most
important statistical concept in model evaluation. In
our model, the strength of spatial correlation turned
out to be related to the value of the exponent c in the
fixation map of the potential, Equation (9). We
performed numerical simulations with the value of
parameter c fixed at different values between 0 and 1
to investigate the dependence of the spatial correla-
tions on this parameter qualitatively (Figure A1).
While c¼ 1 produces negatively correlated scanpaths,
g(r) , 1, at short pair distances r, it is possible to
produce even stronger PCF value than in the
experimental data for c , 0.3. Thus, a single
parameter in our model can generate a broad range of
second-order statistics.

Some notes on the pair correlation function

The pair correlation function can be used to examine
the second-order statistics of a point pattern. We first

Figure A1. Pair correlation function obtained from simulations

for different values of c (blue lines) in comparison to the

experimentally observed PCF (red line) and the result for the

inhomogeneous point process (yellow line). All simulations

were carried out for image #1 of our data set.
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need to define a few terms. A point process is a
probability distribution that generates random point
patterns: a sample from a point process is a set of
observed locations (i.e., fixations, in our case). There-
fore, taking two different samples from the same point
process will result in two different sets of locations,
although the locations may be similar (Figure A2).

First-order statistics: the intensity function. The first-
order statistics of a point process are given by its
intensity function k(x). The higher the value of k(x), the
more likely we are to find points around location x.
Figure A2c shows the theoretical intensity function for
the point process generating the points in Figures A2a
and A2b.

One way to look at the first-order statistics of a point
process is via random variables that count how many
points fall in a given region. For example, we could
define a variable cA that counts how many points fall
within area A, for a given realization of the point
process. The expectation of cA (how many points fall in
A on average) is given by the intensity function, i.e.,

EðcAÞ ¼
Z

A
kðxÞdx ; ðA12Þ

where the integral is computed over area A. A slightly
different viewpoint is given by the density function,
which is a normalized version of the intensity function,
defined as

k̄ðxÞ ¼ kðxÞZ

X
kðx0Þdx0

; ðA13Þ

where the integral in the denominator is over the
observation window X, which in our case corresponds to
the monitor (we cannot observe points outside of the
observation window). The density function integrates

to 1 over the observation window and represents a
probability density: If we now define a random variable
zA that is equal to one, when a (small) area A contains
one point and 0 otherwise, we obtain

pðzA ¼ 1Þ ¼
Z

A
k̄ðxÞdx ¼ k̄ðxAÞdA; ðA14Þ

where xA is the center of area A and dA its area. If A is
small, then k̄(x) will be approximately constant over A,
and the integral simplifies to k̄(xA) times the volume.

Second-order properties. The first-order properties
inform us about how many points can be expected to
find in an area, or, in the normalized version, whether
we can expect to find a point at all. Second-order
properties tell us about interaction between areas:
whether for example we are more likely to find a point
in area A if there is a point in area B.

In the case of the point process (Figure A2), the
points are generated independently and do not interact
in any way, so that knowing the location of one point
tells us nothing about where the other ones will be. As
shown in the manuscript, this is not so with fixation
locations, which tend to cluster at certain distances.

The second-order statistics of a point process capture
such trends, and one way to describe the second-order
statistics is to use the pair correlation function. The
pair correlation function is derived from the pair
density function q(xA, xB), which gives the probability
of finding points at both location xA and location xB.
Let us consider two random variables zA and zB, which
are equal to 1, if there are points in their respective
areas A and B, and 0 otherwise (again we assume that
the areas are small). The probability that zA ¼ 1 and
that zB¼ 1 individually is given by the density function,
Equation (A13). The probability that both are equal to
one is given by the pair density function,

Figure A2. First-order properties of point processes. (a, b) Two samples from a point process (c). The intensity of the point process,
k(x), which corresponds to the expected number of points to be found in a small circle around location x. Dark regions indicate high
intensity (density).
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pðzA ¼ zB ¼ 1Þ ¼
Z

A

Z

B
qðx;x0Þdxdx0

¼ qðxA; xBÞdAdB: ðA15Þ

The pair density function already answers our
question of whether observing a point in A makes it
more likely to see one in B, and vice versa. If points are
completely independent, then the resulting pair density
is given by

pðzA ¼ zB ¼ 1Þ ¼ k̄ðxAÞk̄ðxBÞdAdB: ðA16Þ
If the pair density function gives us a different result

then an interaction is occurring. Therefore, if we take
the ratio of the pair density, Equation (A15) to the
product of the densities, we obtain a measurement of
deviation from statistical independence, i.e.,

cðx;x0Þ ¼ qðx;x0Þ
k̄ðxÞk̄ðx0Þ

ðA17Þ

The resulting object is, however, a complicated, four-
dimensional (i.e., two dimensions for x and two
dimensions for x0) function and in practice it is
preferable to use a summary measure, which is the pair
correlation function expressing how often pairs of
points are found at a distance of e from each other. The
pair correlation function is explained informally in
Figure A3.

More formally, the pair correlation function is just
an average of c(x, x0) for all pairs x, x0 that are
separated by a distance r, i.e.,

qðrÞ ¼
Z

x

Z

x 0!Xjdðx;x 0Þ¼r
cðx;x0Þdxdx0 ðA18Þ

In the above equation, the notation x
0!Xjdðx;x 0Þ ¼ r

indicates that we are integrating over the set of all
points x0 that are on a circle of radius r around x (but
still in the observation window X).

If we are to estimate q(r) from data, we need an
estimate of the intensity function, as it appears as a
correction in Equation (A17). In addition, since we

have only observed a discrete number of points, the
estimated pair density function can only be estimated
by smoothing, which is why a kernel function needs to
be used. We refer readers to (Illian et al., 2008) for
details on pair correlation functions.

Figure A3. From the pair density function to the pair correlation

function. The pair density function q(xA, xB) describes the
probability of finding points at both xA and xB in a sample from

the point process. As such, it is a four-dimensional function, and

hard to estimate and visualize. The pair correlation function

(PCF) is a useful summary. To compute the raw pcf, we pick an

initial location x0 (circle) and look at the probability of finding a

point both at x0 and in locations at a distance ! from x0 (first

array of circles around x0). We do this for various distances

(other arrays of circles) to compute the probability of finding

pairs as a function of ! . Finally we average over all possible

locations x0, to obtain the pair correlation function. The pair

correlation function therefore expresses how likely we are to

find two points at a distance ! from each other.
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