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How do people learn how to plan?
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Abstract

How does the brain learn how to plan? We reverse-
engineer people’s underlying learning mechanisms by
combining rational process models of cognitive plastic-
ity with recently developed empirical methods that allow
us to trace the temporal evolution of people’s planning
strategies. We find that our Learned Value of Compu-
tation model (LVOC) accurately captures people’s aver-
age learning curve. However, there were also substan-
tial individual differences in metacognitive learning that
are best understood in terms of multiple different learn-
ing mechanisms — including strategy selection learning.
Furthermore, we observed that LVOC could not fully cap-
ture people’s ability to adaptively decide when to stop
planning. We successfully extended the LVOC model to
address these discrepancies. Our models broadly cap-
ture people’s ability to improve their decision mecha-
nisms and represent a significant step towards reverse-
engineering how the brain learns increasingly effective
cognitive strategies through its interaction with the en-
vironment.

Keywords: decision-making; reinforcement learning; cognitive
plasticity; metacognitive reinforcement learning

Introduction

One of the most distinctive aspects of human intelligence is
the brain’s ability to learn how to think. A better understanding
of the mechanisms underlying metacognitive learning would
be an important step towards building general artificial intel-
ligence and designing interventions for improving the human
mind. Here, we investigate how people learn how to plan. In
previous work, we proposed two alternative models of how
people learn how to think. According to the rational metar-
easoning model of strategy selection learning (RSSL), people
learn to predict the performance of alternative decision strate-
gies from features of the situation. By contrast, according to
the Learned Value of Computation (LVOC) model, people dis-
cover and continuously change their strategy for a given en-
vironment by learning to predict the value of alternative plan-
ning operations. According to yet another proposal, the brain
tweaks its metacognitive policy directly by following its perfor-
mance gradient. We instantiate these general principles into
concrete models of how people learn how to plan across a se-
ries of different sequential decision problems with some com-
mon characteristics. We then test these models against fine-
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Figure 1: The Mouselab-MDP paradigm.

grained process-tracing data of how people’s planning strate-
gies evolve over time.

Methods
The Mouselab-MDP paradigm

Planning, like all cognitive processes, cannot be observed di-
rectly and must be inferred from observable behavior. This
is generally an ill-posed problem. To address this challenge,
we have developed a process-tracing paradigm that connects
people’s planning processes to an observable behavioral sig-
nature. In the Mouselab-MDP paradigm (Callaway, Lieder,
Krueger, & Giriffiths, 2017; Callaway et al., 2018), illustrated
in Figure 1, participants are presented with a series of route
planning problems in which each location (the gray circles)
harbors a gain or loss. On each trial, participants choose
among the six possible paths to maximize the total reward they
receive across the three locations on the path. Initially, these
rewards are occluded; however, participants can reveal the re-
ward at a each location by clicking on it. This explicit clicking
action corresponds to evaluating the quality of a future state,
a fundamental cognitive operation in planning. The cognitive
cost of this operation is externalized by an explicit cost of one
point for each reward revealed. Here, we use the data col-
lected by (Lieder, 2018) in which the reward structure favors a
counter-intuitive backward planning strategy (Figure 1, right).

Models of metacognitive reinforcement learning

To test the previously proposed abstract principles of
metacognitive reinforcement learning, we instantiate them into
concrete computational models that predict the clicks partic-
ipants make in Mouselab-MDP. As a first step, we have to
specify how each model represents the space of possible
decision-mechanisms over which learning operates.



Representation of planning strategies Jain, Callaway,
and Lieder (2019) found that the participants in our experi-
ment (Lieder, 2018) used 38 distinct planning strategies. The
five most common strategies were acting without any plan-
ning (No planning), acting right after inspecting one immedi-
ate outcome (Myopic Impulsive), inspecting only the immedi-
ate outcomes and choosing the first path that starts out posi-
tively (Myopic Satisficing), inspecting final outcomes and act-
ing as soon as a positive one is uncovered (One final out-
come), and the optimal goal setting strategy that searches for
and goes after the best final outcome if there is one and oth-
erwise seeks to distinguish the the paths with the highest un-
covered final outcomes (Goal Setting). Each of the strategies
people use in the Mouselab-MDP paradigm can be expressed
in terms of a weighted combination of features. And each
participant’s learning trajectory can be described in terms of
how the weights of those features evolve over time. Some of
the features that were most important to represent the partic-
ipants’ learning trajectories include habitual features, such as
the number of times a particular branch, node, or level had
been clicked on before, as well as Pavlovian features, such as
whether the node lies on one of the most promising paths, as
well as model-based features, such as estimate of the uncer-
tainty about the node’s value, as well as features that capture
satisficing, e.g. by assigning an increasingly lower value to
continuing as better paths are identified (soft-satisficing), fea-
tures that govern pruning (e.g., a feature that assigns a neg-
ative value to thinking about paths whose expected value is
—24 or less, and other features. In the models reported be-
low all features were normalized to lie between 0 and 1. For a
detailed documentation of all 56 features and all 38 strategies
please see https://osf.io/hakbz/.

Learning mechanisms Having specified the models’ repre-
sentation of decision strategies, we now specify three mod-
els of the learning mechanism that might operate on these
representations: rational strategy selection learning (Lieder
& Giriffiths, 2017, RSSL ), learning the value of computa-
tion (Krueger, Lieder, & Giriffiths, 2017, LVOC), and strat-
egy discovery by gradient ascent over the space of decision
mechanisms according to the classic REINFORCE algorithm
(Williams, 1992, REINFORCE). In order to compare the learn-
ing that happens in these models to learning in people, we i)
fix the click sequence on the first trial to the clicks performed
by the participant, ii) fit each model’s prior on feature weights
or strategies to each participant’s data individually, and iii) sim-
ulate each participant’s click sequences by applying the fitted
model to the exact sequence of 31 planning problems the par-
ticipant was given.

The RSSL model treats the problem of deciding how to plan
as a 38-armed bandit with one arm for each strategy. It per-
forms Bayesian inference on the expected return of each strat-
egy and selects strategies via Thompson sampling. It has
38 x 2 = 76 free parameters that specify the prior mean and
variance of each strategy’s expected return.

The LVOC model learns an approximation Qmeta = Zfﬁl w; -
fi(b,c) to the value QOmeta (b, ¢) of performing planning opera-
tion ¢ in belief state b via a Bayesian version of the SARSA
temporal difference learning algorithm (Krueger et al., 2017).
The planning operations correspond to clicking or terminating
planning, and the belief state is determined by which payoffs
have already been observed and what their values are. The
LVOC model has two free parameters: the variance (5§rior of
its prior A(W; tprior, 6> - 1d) on the weights w and the number
of samples it draws from its posterior on w to predict Ometa-
To capture individual differences, we fit these parameters to
process-tracing data from individual participants. The mean
vector uyior Was initialized with the feature weights of the strat-
egy participants used on the first trial according to our compu-
tational microscope (Jain et al., 2019).

The REINFORCE model applies the vanilla version of the
policy gradient algorithm REINFORCE to learn the parame-
ters 0 of a softmax policy 7tg(c|b) < exp (£ - ¥3°, 0 - fx(b,¢))
for selecting planning operations based on the features f de-
scribed above. Its learning rate is optimized online using
ADAM and its discount factor y and decision temperature T
are free parameters.

Model selection

We use leave-one-out cross-validation (Friedman, Hastie, &
Tibshirani, 2001) to estimate the generalization error of each
model’s predictions of i) the learning curves of individual par-
ticipants, ii) individual participants’ time series of the fea-
ture weights, and iii) the time series of individual participants’
strategies. The participants’ time series of weights and strate-
gies were determined by inverting a generative model of how
people’s strategies manifest in their click sequences (Jain et
al., 2019). Leave-one-out cross-validation was performed by
training the model on the data from all but one trial and predict-
ing the criterion variable on the left-out trial. Each trial was left
out once and then a distance metric between the predicted
and the observed value on the left-out trials were averaged
across all folds. Model selection was performed separately
for each participant by selecting the model that had the low-
est generalization error in predicting the criterion variable on
average across the 31 cross-validation folds.

Results

Figure 2 shows the average learning curves of people ver-
sus the fitted models. The LVOC model captured the average
of people’s learning curves remarkably well. By contrast, the
REINFORCE model was unable to capture the full extent of
people’s metacognitive reinforcement learning. On average,
the RSSL model learned faster than people and achieved a
higher average performance than the average participant.
Clustering participants based on their initial performance
(avg. score on trials 1-5) and their final performance (avg.
score on trials 22—-31) revealed substantial individual differ-
ences. Model selection based on the AIC suggested that
there were three types of participants: i) 9 participants started
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Figure 2: Comparison of learning curves. Each learning curve
shows the participants’ average score (sum of payoffs minus
planning cost) in the 15, 2" 3 ... 318! Mouselab-MDP
planning problem (see Figure 1)

out performing poorly and did not improve (—6.1 points/trial
vs. —1.5 points/trial), ii) 5 participants started out performing
poorly and improved significantly (—14.7 points/trial vs. 39.8
points/trial), and iii) 25 participants performed well from the
beginning (28.8 points/trial vs. 39.2 points/trial).

Model Comparison Results

We evaluated each of the proposed models against a base-
line model that just repeats the participant’s initial strategy.
(maun)- Given the substantial individual differences, we per-
formed model selection separately for each group of partic-
ipants (in addition to performing model selection across all
participants). Table 1 summarizes the results of within-subject
model selection by criterion. These results show that the indi-
vidual differences in people’s performance can be understood
in terms of different learning mechanisms: The data from the
consistently low-scoring participants (Table 1a) was best ex-
plained by the null model (no learning) whereas the data from
participants who improved substantially (Table 1b) was best
explained by the LVOC model, and the data from the con-
stantly high-performing participants (Table 1c) was best ex-
plained by the RSSL model. These findings suggest that a
substantial source of individual differences in performance is
that some people enter the task with effective planning strate-
gies whereas others do not engage in learning at all. Among
participants who did improve significantly (Group 2), learning
was best captured by the strategy discovery mechanisms of
the LVOC model.

Across all participants, the LVOC model was best at predict-
ing the temporal evolution of the weights that people’s decision
strategies assigned to the different features, and the RSSL
model was best at predicting their strategy sequences and
their performance. Given that some aspects of people’s learn-
ing were best accounted by learning when to select which
strategy whereas others were best accounted by tuning the
weights that define the strategy, it is conceivable that strat-
egy selection learning and strategy discovery learning jointly
shape how people learn how to plan.

a) Consistently low-scoring participants (n =9)
mpyy  REINFORCE ~ RSSL  LVOC

performance 5 1 1 2
strategies 2 3 3 1
weights 3 0 0 6

b) Participants who improved substantially (n = 5)
mpy  REINFORCE ~ RSSL  LVOC

performance 0 1 1 3
strategies 1 0.5 0 35
weights 1 0 2 2

c) Consistently high-scoring participants (n = 25)
mpui  REINFORCE ~ RSSL  LVOC

performance 5.33 2.33 13.33 4
strategies 8 0.5 14 2.5
weights 5.5 5.5 7 7

d) All participants (n = 39)
mpy ~ REINFORCE ~ RSSL  LVOC

performance 10.33 4.33 15.33 9
strategies 11 4 17 7
weights 9.5 5.5 9 15

Table 1: Number of participants whose data was best ex-
plained by each of the models broken down by model selec-
tion criterion and group.

Shortcomings of the LVOC model

The model comparisons reported above often favored the
RSSL model, which assumes that participants make discrete
shifts between pre-defined planning strategies. However, this
model cannot capture the gradual learning curve that many
participants demonstrated. These participants who started
from a low-performing strategy took about 7.5 &= 1.4 trials to
transition to a high-performing strategy whereas the RSSL
model accomplishes this transition in only 2.6 + 0.1 trials on
average. The LVOC model captures this gradual increase, but
often lost to the RSSL model in the model comparisons at the
level of individual participants. To understand why, we investi-
gate which aspects of how people’s planning strategies evolve
over time the LVOC model might be failing to capture.

We found that the LVOC model captured the gradual de-
crease of acting impulsively and myopic satisficing, and also
the gradual increase of the optimal goal-setting strategy. But
its predictions deviated from people’s performance in the fol-
lowing ways: First, while the prevalence of the myopic impul-
sive strategy gradually decreased among people, the LVOC
model predicted that its frequency should initially increase and
then return to its original level. Second, even when fit to indi-
vidual participants’ strategy sequences, the LVOC succeeded
less frequently in improving upon its initial strategy than peo-
ple (69% vs. 97%). Third, LVOC discovered the optimal goal
setting strategy less often than people (11.8% vs. 54%). In-
stead, the LVOC model most often learned to use strategies
that combine goal-setting with unnecessary extraneous plan-
ning (i.e., the Best Final Outcome strategy which inspects all
final outcomes and goes after the best one and the Immediate
Outcomes and Goal Setting strategy which inspects final out-
comes of positive immediate outcomes.) This suggests that
while the LVOC model can learn to prioritize long-term conse-
quences, it does not fully capture people’s ability to learn an
adaptive stopping rule.



Modeling how people decide when to stop planning

The primary shortcoming of the basic LVOC model evaluated
above is that it continues planning long after people would
stop planning. To address this shortcoming, we investigated
two potential sources of this discrepancy: i) planning might in-
cur an additional computational cost for people that the basic
LVOC model does not capture, and ii) people might employ
a simple stopping rule to decide when to terminate planning.
To investigate the first possibility, we developed an extended
version of the LVOC model that includes an additional cost
parameter that is subtracted from its meta-level reward for ex-
ecuting a planning operation. To test the second possibility we
developed two additional models.

Two-Stage Models Previous findings indicate that foraging
decisions involve two separate decision systems: while the
ventromedial prefrontal cortex appears to estimate and com-
pare the values of alternative options the dorsal anterior cin-
gulate cortex appears to decide whether to continue collecting
more information (e.g., by foraging) or to choose the best op-
tion found so far (Rushworth, Kolling, Sallet, & Mars, 2012).
Since deciding how to plan is like foraging for information, it
might be implemented via two separate systems as well. We
therefore develop a model that first decides whether to con-
tinue planning (Stage 1) and then either selects the action that
looks best so far or selects the next planning operation accord-
ing to the LVOC model (Stage 2). We instantiated this idea in
two 2-stage models that use the stopping rules that (according
to the AIC) best explained the stopping behavior of the largest
and the second largest number of participants respectively.
Concretely, the probabilistic stopping rule that was the best
model for the largest number of participants (i.e., 18/39) was
P(C; = stop|b;) = sigmoid (1/7- (maxpam IE [R(path)|b;] —8)),
where the free parameters 6 and T correspond to the decision-
maker’s aspiration level and noisiness respectively. The deci-
sion rule that was best for the second largest number of partic-
ipants (i.e., 10/39) was an extension of this rule where the as-
piration level 6 gradually decreases with the number of clicks

the participant has already made (i.e., 6 = a — b - ngjicks)-
Results The addition of a second decision stage reduced

the LVOC model’s generalization error in predicting people’s
performance, allowed it to capture that Optimal Goal Setting
becomes the most prevalent planning strategy (with a preva-
lence of 31.9% and 29.4% respectively), and increased its
propensity to improve on the initial strategy to a near-human
level (86.9% and 84.6% respectively). The addition of a cost
parameter neither increased nor decreased the LVOC model’'s
generalization error. Most importantly, according to the AIC,
the three new models provided the best explanation for the
performance of 17 out of 39 participants. Taken together, the
four LVOC models provide the best explanation for the ma-
jority of all participants’ learning curves (20/39). The data
from the remaining participants were best explained by the
RSSL model (12.5/39), the null model (4.5/39), and the RE-
INFORCE model (2/39). The proportion of participants whose
weights were best explained by one of the LVOC models was

even higher (23/39). Out of the four LVOC models, the 2-stage
model with an adaptive stopping criterion performed best at
predicting people’s performance (8/39) and the basic LVOC
model performed best at predicting the temporal evolution of
the feature weights (9/39). Furthermore, the LVOC models
best explained the scores of low-performing participants and
substantially-improving participants and the feature-weights of
consistently high-performing participants, whereas the RSSL
model remained the best explanation for the performance of
the consistently high-performing participants.
Additional results can be
https://osf.io/hakbz/.

found at

Conclusion

Given that this is the first time that metacognitive reinforce-
ment learning has been modelled at the level of individual
computations, the LVOC model got surprisingly close to the
average of people’s learning curves. Furthermore, the LVOC
model and its extensions jointly provided the best explanations
for the majority of our participants’ data. Despite the success
of the LVOC model, we also observed considerable individual
differences in planning that might partly result from different
people relying on different learning mechanisms and different
rules for deciding when to stop planning. While the strategy
discovery mechanism of the LVOC model is important, addi-
tional mechanisms — such as selecting strategies from a tool-
box of pre-existing strategies — might also be necessary to
capture human learning. Future work will therefore investi-
gate how strategy selection and strategy discovery interact in
human metacognitive learning, evaluate improved versions of
the RSSL model, and further elucidate individual differences
in how people learn how to plan.
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