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namics model? given an initial state x; and already observed transitions Ty, T Number of context ransitons (0] MPC calib. - Random calib. - MPC gain
Our approach Open-Loop calibration: Computing the action sequence once at the beginning. The entropy of 3 behaves reason- MPC-calibrated models perform
. . . MPC calibration: Re-planning the action sequence after every applied action. ably for context sets containing better in swing-up task than models
e Context-conditional dynamics model with context encoder for amor- : . . 0L g » . . . .
. Baseline: Applying random actions to collect calibration transitions. transitions from a varying number  calibrated with random actions
tized inference
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e Compute optimal calibration action sequence via Information-Gain . y
maximization e ~
— Computational alternative to hand-crafted system identi- £ e ~N
fication signals! o ' c‘% < Paper and supplementary material available at:
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