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In this supplementary document, we provide more
details on the model designs and experimental setups
(Sec. S1), further elaborations on our method (Sec. S2), and
further discussions on experimental results, limitations and
failure cases (Sec. S3). Please also refer to the supplemen-
tary video for animated results.

S1. Implementation Details

S1.1. SkiRT

Architecture. The coarse and the fine shape prediction
have the same architectural design, but majorly differ in
their inputs. Both networks are a 8-layer multi-layer percep-
tron (MLP) comprising 256 neurons per layer, and with the
SoftPlus as the nonlinear activation. Following [7], a skip
connection is added from the input layer to the fourth layer
of the network. From the fifth layer the network branches
out two heads with the same architecture that predicts the
point locations and normals respectively.

The coarse shape MLP takes as input the Cartesian co-
ordinates of a query point from the surface of the SMPL-X
body in the canonical pose b̂i ∈ R3, as well as a global
shape code zcoarse ∈ R256. The global shape code is shared
by all query locations for the coarse stage.

The fine detail MLP takes a query coordinates b̂i ∈ R3, a
local shape descriptor zfine

i ∈ R64, and a local pose descrip-
tor zpose

i ∈ R64. Each query location on the body surface
is associated with a unique local shape descriptor zfine

i that
is an optimizable latent vector learned in an auto-decoding
fashion [7]. To get the pose descriptor zpose

i , we follow [6]
and first encode the UV-positional map (with a resolution of
128× 128) of the unclothed posed body by a U-Net [9], re-
sulting in a 128×128×64-dimensional pose feature tensor.
For each query location b̂i, we find its corresponding UV-
coordinate ûi ∈ R2, and obtain the local pose feature zpose

i

by querying the spatial dimensions (i.e. the first two dimen-
sions) of the pose feature tensor using ûi with bilinear in-
terpolation. We empirically find that this U-Net-based pose
feature encoder provides the sharpest geometric details. Re-

placing it with e.g. the filtered local pose parameters (as in
SCANimate [10]) yields a significant performance drop.

The skinning weights prediction network is a 5-layer
MLP that comprises 256 neurons per intermediate layer.
The final layer outputs a 22-dimentional vector that corre-
sponds to the 22 clothing-related body joints in the SMPL-
X model (we merged all finger-related joints into a “hand”
joint for each hand). LeakyReLU is used as the nonlinear
activation except for the last layer where a SoftMax is used
to obtain normalized skinning weights.

Loss functions. In addition to the loss functions intro-
duced in the main paper Eqs. (8)-(10), we follow [6] and use
Chamfer Distance and the normal loss to train our model.

The bi-directional Chamfer Distance penalizes the L2
discrepancy between the generated point cloud X = {xi}
and the ground truth Y = {yj}: LCD =
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The normal loss Ln is the L1 discrepancy between each
point’s predicted unit normal n(xi) and the normal of its
nearest neighbor in the ground truth point cloud:

Ln =
1
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d(xi, yj))
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1
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Note that the normal loss is computed based on the near-
est points found by the Chamfer Distance, intuitively it is
more effective when the point locations of the predicted
point cloud roughly matches the ground truth. Therefore we
introduce the normal loss in our training after 100 epochs
when the Chamfer loss plateaus.

The total loss is a weighted sum of all these terms:

L = λCDLCD+λnLn+Lrgl+λLBSLLBS+λreprojLreproj. (3)

The weights are set as λCD = 1e4, λn = 1.0, λLBS =
1.0, λreproj = 5e2. Note that, as discussed in the main
paper, the displacement regularization term Lrgl contains a



per-point adaptive weight λadapt
i which has an initial value

of 2e3 but decays at each point adaptively according to its
kNN radius. See Sec. S2.2 for more details.

Training and Inference. We use query points from the
low-resolution (128×128) UV map to train the coarse stage
MLP, and evaluate it at test-time with denser query locations
(e.g. those from a 256× 256 UV map) that match the num-
ber of points on the fine stage. Although it is also possible
to train the coarse stage with denser points too, we find that
the resulting coarse shape tends to be noisy. Using fewer
points for training prevents the model from being overfit
to local details of certain training examples, and yields a
smoother learned coarse shape. The coarse stage is trained
using the Adam optimizer with a learning rate of 3e − 4
for 150 epochs, which takes approximately 0.9 hour on a
NVIDIA RTX 6000 GPU.

For the fine stage, we train the displacement network and
the LBS MLP together using Adam with a learning rate of
3e−4 for 250 epochs, which takes approximately 2.5 hours
on a NVIDIA RTX 6000 GPU.

S1.2. Baselines

SCANimate. For the pose-dependent shape prediction
task (main paper Sec. 5.1), we use the official implemen-
tation and hyperparameter settings from SCANimate [10]
and train a separate model for each outfit in the ReSynth
dataset [6]. Since SCANimate requires watertight meshes
for training the implicit surfaces, we process the dense
point clouds provided in the ReSynth dataset into watertight
meshes using Poisson Surface Reconstruction [3] and then
use this processed data as ground truth to train the model.
During training, we sample 8000 points from the clothed
body meshes dynamically at each iteration.

At test-time, for a fair comparison with the point-based
methods, we first extract a surface from the SCANimate’s
implicit predictions using Marching Cubes [4], and then
sample the same number (47,911) of points from the sur-
face for evaluating the quantitative errors.

POP. We train and evaluate POP also in a subject-specific
manner to fairly compare with all other methods. Follow-
ing the official implementation, we train and evaluate model
using a fixed set of 47911 query points on the body that cor-
respond to the valid pixels from the 256 × 256 UV-map of
SMPL-X. The reported quantitative errors are averaged over
all the query points.

S1.3. Further Details on Experimental Setups

Here we provide more details on scan completion exper-
iment as described in the main paper Sec. 5.3. We scan
subjects wearing challenging clothing (e.g. skirts and very
loose and wrinkly shirts) using a body scanner. The sub-
jects are asked to improvise on several motion sequences,

(a) (b) (c)

Figure S1: Visualizing a slice from the pre-diffused SMPL-
X LBS weight field. (a) Diffusion using nearest neigh-
bor assignment. (b) Overlay of the SMPL-X body (color-
coded with the body LBS weights) in the nearest-neighbor-
diffused field. (c) The smoothed field after optimization
convergence. The colors in the fields indicate the skinning
weights to body part with the corresponding color in (b).

resulting in few hundreds of frames (typically 200-300) of
raw scan data. We then fit the SMPL-X body model to the
scan data, and train a subject-specific SkiRT model with
the scan-body pairs using the same procedure and hyper-
parameters as described in Sec. S1. The subjects’ hands
and feet are often largely incomplete throughout the se-
quence in the captured raw scans due to the hardware limi-
tations. Therefore we zero out the displacement predictions
for these parts. At test time, we feed the model with the
training bodies. The trained model is expected to reproduce
the training data and outputs the hole-filled complete scans
of point clouds.

S2. Extended Illustrations

S2.1. Smoothing the LBS Weight Field

As described in the main paper Sec. 4.1, we first fol-
low LoopReg [2] and diffuse LBS weights of the SMPL-
X model to R3 the using nearest neighbor assignment: for
each query point in R3, we find its nearest point on the
SMPL-X body surface and assign its LBS weight to the
query point. In practice, the diffused LBS weights are pre-
computed on a regular grid (can also be seen as voxel cen-
ters) with a resolution of 128 × 128 × 128. For an arbi-
trary query point, its LBS weights are acquired via trilinear
interpolation on its neighboring grid points. As shown in
Fig S1(a), the nearest neighbor assignment results in clear
discontinuities of the LBS weight distribution in space. A
similar illustration can also be found in Fig. 3 in [2].

To smooth the spatial distributions of the LBS weights,
we use an optimization-based approach. On a high level, for
each grid point, we minimize the discrepancy between its
LBS weights and the average of its 1-ring neighbors. For-
mally, we optimize the LBS weights on all the grid points
with respect to the following energy function:

Esmooth =
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∑
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1
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where pi denotes a grid point, N (pi) denotes the set of its 1-
ring neighbors, qj is a point in the neighborhood, and M is
the total number of grid points. The optimization effectively
smoothes the boundary discontinuities of the LBS weights
in space, as shown in Fig. S1(c).

S2.2. Point-adaptive Regularization/Upsampling

As described in the main paper Sec. 4.3, both regulariza-
tion (for training) and the point-adaptive upsampling (for
post-processing) are based on the kNN radius li , i.e. the
averaged k-nearest neighbor (we used k=5) distance, per
point. Let µl and σl be the mean and standard deviation
of points’ kNN radius calculated over the entire point set.
During training, if a point’s kNN radius is above a thresh-
old of mean plus two standard deviations, we disable the
regularization on the normal of the displacement for that
point:

λadapt
i =

{
0 if li > µl + 2σl,

2e3 otherwise.
(5)

We also experimented with more sophisticated policy such
as decaying the per-point weight using an exponential decay
with respect to the kNN radius, but do not observe notice-
able improvements.

The simple thresholding in Eq. (6) is also applied to the
upsampling in the post-process. Consider a point xi with
li > µl +2σl, we aim to generate more points around it. To
do so, we find the triangle on the SMPL-X body mesh where
the xi’s corresponding body point b̂i locates, and assign a
higher sampling weight ηi for the triangle:

ηresample
i =

{
2

li−µ

σ if li > µl + 2σl,

0 otherwise.
(6)

We then re-sample query points from the body mesh sur-
face by modifying the standard uniform mesh sampling. In
the uniform sampling, the sampling probability on each tri-
angle is proportional to its area. We scale this probability
with ηresample

i , so that more points are generated on the re-
gions that originally have lower point density. The resam-
pled query points are then fed into the MLP to generate the
new points on the clothing surface. The final result is the
union of the new points and the original point set. This
process can be repeated for several iterations for improved
visual quality. The results shown in the main paper (third
column in Fig. 5) uses 3 iterations of upsampling.

S3. Extended Results and Discussions
S3.1. Limitation and Failure Cases

In the case of very loose dresses, the points on the dress
surface produced by SkiRT can still be visibly sparser than
on other body parts as visualized in the main paper Fig. 5;

consequently the mesh reconstruction can have rough sur-
faces as shown in Fig. S2.

Although the coarse stage enables handling challenging
clothing types, the point-based coarse geometry is typically
not as smooth as that of the base body mesh. Consequently,
when adding the fine-stage predictions to the coarse shape,
the final geometry can possibly be noisier than POP (which
adds displacements directly to the unclothed body), hence
occasional loss of clothing details (as seen in the main paper
Fig. 5) and a noisier surface reconstruction (as shown in
Fig. S2), despite a higher quantitative accuracy on entire test
set. Unlike the mesh representation where one could apply
loss functions (such as the Laplacian term) that encourage
the smoothness in the generated geometry, for point clouds
such regularization is not trivial due to the absence of the
point connectivity, and we leave this for future work.

As with other recent models [6, 10], our model requires
the fitted underlying body to be accurate. While this is not
an issue with the synthetic ReSynth data that we use in the
paper, we observe certain failure cases with the real data
where the estimated body under clothing is imperfect. For
example, in the scan completion experiment, the fitted body
can be inaccurate due to the challenging clothing. Conse-
quently, in the resulting completed scans flickering can be
observed especially at the extremities, as shown in the sup-
plementary video. In the future we plan to refine the body
pose together with the network parameters during training
so as to better handle real world data.

S3.2. Mesh Reconstruction

In Fig. S2 we qualitatively show the results of applying
Poisson Surface Reconstruction (PSR) to the point sets gen-
erated by a baseline method and ours, respectively. Through
building an implicit field of the indicator function, the PSR
is capable of filling holes in the point clouds to a certain
extent. However, when the point cloud has obvious discon-
tinuities as with the previous method [6], the reconstructed
meshes are prone to artifacts. In contrast, our method gen-
erates point clouds that have a more uniform distribution of
points on the clothing surface, and thus effectively alleviates
this issue.

Note that the purpose of this experiment is to show the
impact of the split-like artifacts on the quality of mesh re-
construction. However, mesh reconstruction is not the sole
exit of point-based human representations. Recent work has
shown the potential of combining the point-based represen-
tation with neural rendering to achieve realistic renderings
without the intermediate meshing step [1, 5, 8]. Combining
these methods with our pipeline is an promising direction
for future research.
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Figure S2: Comparison between the point-based baseline POP [6] and our method in terms of mesh reconstruction quality.
The meshed results are produced by performing Screened Poisson Surface Reconstruction [3] on the corresponding point
clouds. When the clothed body point cloud has clear gaps on the clothing surface, the reconstructed mesh is prone to
artifacts.

S3.3. Scan Completion

Please refer to the supplementary video for the animated
results of the scan completion experiment.
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