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Abstract. Estimating the 6-DoF pose of objects from images is a fun-
damental task in computer vision and a prerequisite for downstream
tasks like augmented reality or robotic grasping applications. This task
becomes particularly challenging in cluttered scenes, when many objects
are present in the image in close proximity and occlude one another.
However, the close proximity between objects also provides additional
cues about the objects, as objects in physically plausible scenes do not
intersect one another and thus occluding objects constrain the ones they
occlude. We present a novel approach for utilizing this information in 6-
DoF object pose refinement of known objects. Our formulation extends
RAFT-based pose refinement to reduce penetrations between objects to
a large degree and leads to more plausible object poses with less pene-
trations. We evaluate our approach quantitatively and qualitatively on
two benchmark datasets, demonstrate improvements over baselines, and
will make the source code of our approach publicly available to foster
future research in this area.
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1 Introduction

Estimating the 6 degree of freedom (6-DoF) pose, i.e., position and orientation,
of known objects from camera images is a fundamental task in computer vision
and a prerequisite for downstream tasks like augmented reality or robotic ob-
ject grasping applications. Many works have attempted to solve this problem
using classical approaches for feature matching (e.g ., [15]) or, more recently, by
exploiting advances in deep learning [27,6,5,24]. Methods like [11,14,22] target
improving initial pose prediction by a neural network with iterative refinement
of the pose estimates.

While these methods often yield accurate results for well-visible objects, clut-
ter with severe occlusions often still poses a challenge, if depth and texture fea-
tures do not provide enough cues for accurately estimating the object pose. We
argue that the proximity of objects in cluttered scenes does not only provide a
challenge for pose estimation, but also an additional cue as well-visible objects
constrain the poses of occluded objects as we illustrate in Fig. 1.
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Ground Truth CIR [14] Ours

Fig. 1: Physically plausible object pose refinement in cluttered scenes. Given an
RGB-D input image (color input top left), in which the wood block is occluded
by the bleach cleanser bottle, coupled iterative refinement (CIR) [14] yields an
implausible result with penetrations of the wood block with the bleach cleanser
bottle and the background tote (center). Our approach (right) resolves these
penetrations for more accurate and physically plausible object poses.

Many previous methods separate the object pose estimation task into several
stages: 2D object detection, pose estimation/regression and optionally pose re-
finement. In this work, we focus on the refinement stage of the pose estimation
task. We build upon the refinement algorithm of Coupled Iterative Refinement
(CIR) [14], which in its basic form considers each object in isolation after the
object detection stage. By contrast, we follow a line of physics-informed pose
refinement approaches [2,3,23], extend CIR’s pose refinement algorithm, and op-
timize the poses of all detected objects jointly, taking into account that no two
objects share the same 3D space by physical plausibility. We propose a novel
penetration penalty based on a signed distance function representation of the
objects.

We evaluate our approach on two multi-object pose estimation benchmarks
and demonstrate slight improvements over CIR in pose estimation and strong
reductions of inter-object penetrations. Our approach also reduces penetrations
better than two baseline approaches (MoreFusion [23] and SporeAgent [3]). Wrt.
the latter state-of-the-art reinforcement learning approach (SporeAgent), our
approach also demonstrates better generalization capabilities to novel scenes
using the same underlying detector.

In summary, we contribute the following:

– We propose a novel intersection penalty for pose refinement with deep learn-
ing based correspondences that resolves penetrations between objects and
leads to more accurate and physically plausible object pose estimates.

– We evaluate the accuracy of the recovered object poses and their physi-
cal plausibility in terms of interpenetration on two benchmark datasets. We
demonstrate improved performance in penetration resolution and generaliza-
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tion wrt the state-of-the-art pose refinement methods that also use physical
plausibility.

– We will make the source code of our method publicly available to foster
future research in this area.

2 Related Work

Object pose estimation. Early works such as, e.g., [15], estimate keypoint cor-
respondences between a 2D image and the 3D object model and computed the
pose from the 2D-3D keypoint matches using the Perspective-n-Point (PnP) al-
gorithm [10,12]. In recent years, significant improvements in accuracy have been
achieved using deep learning based approaches [27,5,24,25]. A complementary
line of works attempts to refine the object poses obtained by an initial prediction
by render-and-compare, matching a render of the object in the currently esti-
mated poses using learned features [13,11,14] or by differentiable rendering [22].

Object pose refinement with physical plausibility. Most previous works separate
the detection and pose estimation stages and consider objects in isolation during
pose estimation. Notable exceptions are [11,23,2,3], where [11] jointly estimates
a set of camera poses and a collection of objects in an object-level bundle ad-
justment setting for a globally consistent scene. MoreFusion [23] also considers
objects jointly, but like our method tries to estimate poses from a single im-
age. It uses volumetric pose prediction and combines the iterative closest point
algorithm with iterative collision checks for refinement using occupancy grids.
VeREFINE [2] combines pose verification with physics-guided iterative refine-
ment by embedding objects in simulation. As some object configurations might
lead to diverging simulation results, the observation-based verification is needed
for robustness. Our approach directly resolves penetrations between objects. Pen-
etrations are typically one of the reasons for diverging behavior in simulation.
SporeAgent [3] trains a reinforcement learning agent for object pose refinement.
The approach only utilizes object geometry and definitions of plausible poses
in which objects do not intersect or float in the air as in [1]. By contrast, we
propose to embed a penetration constraint in an optical flow-based refinement
optimization, allowing us to exploit both depth-augmented 2D image features
and physical plausibility for 6-DoF pose prediction.

3 Method

Our method takes a single RGB-D image as input and outputs a set of object
detections with associated pose estimates. We assume the shape and texture of
objects that are detected to be known in advance, i.e., we assume available tex-
tured 3D meshes for the objects. We build our method upon Coupled Iterative
Refinement (CIR) by Lipson et al . [14], which targets the same task. Our key
contribution is an extension of CIR’s refinement algorithm. We add a term for
avoiding penetrations between objects in their pose estimates to CIR’s optimiza-
tion objective and thus receive physically more plausible scene configurations.
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3.1 Preliminaries

CIR [14] separates the pose estimation task into the 3 stages object detection,
pose initialization, and pose refinement. It builds upon Cosypose [11] for de-
tection and pose initialization. Objects are detected by Mask R-CNN [4] and
cropped to their bounding boxes. The bounding boxes are used to initialize the
object translation tbbox, which aligns the bounding box of the 3D model with
the detected object mask. A rendered image of the object in this estimated pose
is fed to a ResNet-based architecture (EfficientNet [20]) together with the image
crop. The result is a rotation R and a translation increment ∆t, yielding the ini-

tial object poseG
(0)
0 ∈ SE(3). After initialization, CIR refines the pose estimates

in a render-and-compare approach. Given the textured 3D meshes of the objects
and viewpoints parameterized by extrinsic and intrinsic parameters Gi ∈ SE(3)
and Ki, respectively, images and depth maps of the objects can be rendered
using PyTorch3D [18]. Here Gi denotes the object pose in camera coordinates.
Lipson et al . [14] then proceed by denoting the pose for the image by G0 and
producing a set of renders with poses {G1, . . . ,GN}. They then compute corre-
spondence features between the renders and the input image using RAFT [21]
and use these in a bidirectional perspective-n-point (BD-PnP) optimization to
refine the pose. We refer to [14] for details and denote the BD-PnP energy for
object i (eq. (7) in [14]) as EBD−PnP(G

i
0) in the following.

3.2 Resolving Penetrations

The formulation from [14] relies on feature matches between rendered objects and
the input image crops. In the presence of other objects, occlusions and regions
of uniform texture can make the correspondences unreliable and thus lead to
bad pose estimates (see Fig. 1). This becomes especially challenging in cluttered
scenes where objects are in close proximity, e.g ., when multiple objects lie in a
box like in the Synpick dataset [17]. However, we can reason about physically
plausible scene configurations in this setting: we know that no two objects occupy
the same space in 3D. We include this information in an additional data term
for retrieving more accurate and more plausible object poses.

Towards this goal, we represent the geometry of the objects by volumetric
signed distance functions (SDFs) ϕi : R

3 → R. Evaluating an SDF ϕ at a
point x ∈ R

3 gives the distance to the closest surface with a sign indicating
whether x lies inside (ϕi(x) < 0) or outside (ϕi(x) > 0) the object. The surface
is thus represented implicitly as the zero level set of the SDF ϕ. We propose
the following energy term to resolve penetrations between M objects with poses{
G1

0, . . . ,G
M
0

}
:

Einter
({

G1
0, . . . ,G

M
0

})
=

M∑

i=1

M∑

j=1
j ̸=i

Einter(G
i
0,G

j
0), (1)
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Fig. 2: The intersection constraint in Eq. (2) penalizes penetrations between
objects. In the left illustration, the volume of ϕ2 overlaps with the volumes ϕ0

and ϕ1, yielding negative values for ℓinter(xi) for the points x0 and x1 defined
in the coordinate systems of objects 0 and 1, respectively (x̃i = G2

0G
i
0xi is the

point transformed to the coordinate system of ϕ2). Thus Einter is positive. In
the right illustration, the penetration is resolved by a rotation of the object ϕ2,
yielding ℓinter(xi) ≥ 0 (where equality is attained for objects in contact) and
thus Einter = 0.

where

Einter(G
i
0,G

j
0) =

∫

Ωi∩Ωj

1

2
min

{
0,−

(
ϕi (x) + ϕj

(
G

j
0G

i
0

−1
x
))

︸ ︷︷ ︸
=:ℓinter(x)

}2

dx, (2)

where x is defined in the coordinate system of object i and Ωi and Ωj are the
3D bounding volumes containing objects i and j, respectively.

Intuitively, we argue that a point x that is inside one object by a certain
distance |ϕ(x)| (where inside is indicated by ϕ(x) < 0) needs to be outside all
other objects by at least |ϕ(x)|. Thus, the sum of any two SDF values, ℓinter
in Eq. (2), needs to be positive. Equation (2) penalizes negative values of ℓinter
in the area in which the bounding volumes of objects i and j overlap. Figure 2
illustrates the values of ℓinter and Einter in Eq. (2) for cases with and without
penetration between the objects. A similar formulation has been used in [19]
to close object shapes for 3D mapping. In contrast to their work, we assume
the object shapes given by CAD models and refine the object poses to resolve
penetrations.

We optimize the combined objective

E
({

G1
0, . . . ,G

M
0

})
= EBD−PnP

({
G1

0, . . . ,G
M
0

})
+ Einter

({
G1

0, . . . ,G
M
0

})
, (3)

where EBD−PnP

({
G1

0, . . . ,G
M
0

})
=

∑M

i=1 EBD−PnP(G
i
0). For minimizing Eq. (3),

we follow [14] and linearize Eq. (3) using the current pose estimate and then
perform a fixed number of Gauss-Newton updates. Each update step produces a
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pose update δξ ∈ se(3), which is used to update the pose on the SE(3) manifold

G
(t+1)
0 = exp(δξ) ·G

(t)
0 .

3.3 Implementation Details

To implement our intersection penalty in Eq. (2), we compute discrete volu-
metric signed distance function (SDF) grids at a resolution of 643 from the 3D
object meshes using mesh2sdf1 [26]. We then discretize Eq. (2) by turning the
integral into a sum over all voxels in object i that when transformed to object j’s
coordinate frame are inside the bounding volume of object j. For computing the
Gauss-Newton updates, gradients of the SDFs are required, which we compute
using central finite differences on the discrete grid. For non-integral point queries
to SDF or gradient volumes (either by non-integral sampling or after transforma-
tion to the other object volume), we perform triliniear interpolation to compute
the corresponding value. Following the CIR evalution pipeline, we use 4 outer
loops, 40 inner loops, and 10 solver steps in our experiments. In some cases, the
EfficientNet initialization is too far off, leading to objects being estimated on
the wrong sides of each others. In these cases, our penetration constraint actu-
ally prevents CIR from correcting the pose. We thus use the first outer loop as
warmup iteration without the penetration penalty in our experiments.

4 Experiments

We evaluate our approach on two publicly available datasets. The main dataset
used in our evaluation is SynPick [17]. It consists of sequences in which the 21
objects from the YCB Video Dataset [27] are initially in a box and then ma-
nipulated with a suction cup gripper. The data is stored in the format specified
in the BOP benchmark suite [8,9]. Additionally, we evaluate on the YCB Video
[27] dataset from the BOP benchmark [8,9]. In the following, we evaluate pen-
etration and pose accuracy and show qualiative and quantitative results of our
method and baselines. Details on the evaluation measures and further results
can be found in the supplementary material, including a video.

4.1 Qualitative Results

We show qualitative results on the Synpick dataset in Fig. 3. In these cluttered
scenes our approach manages to reduce penetrations and thus yields results that
match the ground truth better than CIR’s estimates. Note that in many of these
cases, there is only little difference observable in the input view, but alternate
views (every second row) highlights how our approach improves object poses. In
Fig. 4, we show results on the YCB Video dataset. While for some images (top
row and bottom left), our method manages to reduce penetrations and use that
information for more accurate pose estimates, in other cases (bottom right), our
optimization runs into local optima for the pose due to bad initialization while
penetrations are reduced well.

1 https://github.com/wang-ps/mesh2sdf

https://github.com/wang-ps/mesh2sdf
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GT CIR [14] Ours GT CIR [14] Ours

Fig. 3: Qualitative results on the Synpick dataset. Our method manages to re-
duce penetrations between the objects and the background box, leading to more
accurate results for occluded objects (wood block in the top left, sugar box in
the top right, banana in the bottom left and power drill in the bottom right).
The average AD scores improve from 0.014 to 0.013 (top left), 0.031 to 0.009
(top right) and from 0.031 to 0.023 (bottom right), and remain approximately
the same at 0.043 for the bottom left example.

4.2 Evaluation Measures

Penetration. As the key focus of our work lies on improving the physical plau-
sibility of object pose estimates, we evaluate the penetration volume between
objects as a measure of physical plausibility. We compute the penetration vol-
ume for object i as the volume it shares with other objects:

PEN(i) =
∑

v∈Ωi

[
∃j ∈ {1, . . . ,M} :

(
ϕi (v) < 0

)
∧
(
ϕj

(
GjGi−1

v
)
< 0

)]
vol(v),

(4)
where [·] denotes the Iverson bracket and vol(v) is the volume of voxel v. In other
words, Eq. (4) sums the volume of voxels which lie inside object i that also map to
points inside another volume j. We evaluate the absolute penetration in mm3 as
well as the relative penetration PEN(i)/vol(i), where vol(i) =

∑
v∈Ωi

[ϕi(v) < 0]
is the volume of object i. The penetration scores are then averages across all
objects in an image and across all images in the dataset.

Pose evaluation. For evaluating pose accuracy, we compute the recall scores
for the error measure AD [7] at threshold of 2%, 5% and 10% of the object
diameter using the BOP toolkit2. Additionally we compute the AD, ADI, and
ADD area-under-the curve on the YCB Video dataset, following [3].

2 https://github.com/thodan/bop toolkit

https://github.com/thodan/bop_toolkit
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GT CIR [14] Ours GT CIR [14] Ours

Fig. 4: Qualitative results on YCB Video. Our approach reduces penetrations
and improves the object poses of the bowl (top left), the box (top right), and
the clamp (bottom left). The average AD scores improve from 0.04 to 0.01 (top
left), 0.05 to 0.01 (top right), and 0.03 to 0.02 (bottom left). Bottom right: limit
case. A bad initialization can lead to local optima for our optimization, reducing
the penetration with the background plane but ending in a wrong pose for the
bowl with an increase in the AD scores from 0.05 to 0.12.

4.3 Quantitative Results

We evaluate our method on frames not showing the gripper from the “Test Pick
Targeted” and “Test Pick Untargeted” splits of the Synpick dataset and the
default test splits of the other BOP datasets as specified by the provided target
files. For finding the frames not showing the gripper in Synpick we choose the
first frame of every test sequence and every frame in the sequence in which the
minimum depth equals the minimum depth of the empty box at the end of the
sequence. We compare to the base “vanilla” CIR [14], EfficientNet [20] (EN),
MoreFusion [23] (MF), and SporeAgent [3]. MoreFusion includes physical plau-
sibility in object pose estimation by volumetric pose prediction and refinement
through iterative closest points (ICP) and iterative collision checks (ICC), and
we always evaluate the “full” approach, including ICP and ICC. SporeAgent
trains a reinforcement learning agent to refine poses for physical plausibility by
avoiding penetrations and floating objects. For SporeAgent, we compare two
variants on YCB Video: using PoseCNN [27] for initialization (SP-PC) and us-
ing EfficienNet [20] for initialization (SP-EN) to have a fair comparison to our
method and CIR, which also use EfficientNet for initialization. Unfortunately,
we did not achieve good results for CIR when directly training its full pipeline
on Synpick with the same settings as for YCB Video. We thus evaluate Efficient-
Net, CIR, SporeAgent and MoreFusion models on Synpick which are consistently
trained on YCB Video to test their generalization capabilities. For SporeAgent,
we only compare to the SA-EN variant as PoseCNN predictions are not available
for Synpick.

As the background box is provided for the Synpick dataset, we compute an
SDF model for it and use it as additional penetration constraint in our approach
and compare to not using this additional cue. Similarly, we use the annotated
planes from SporeAgent [3] as background cue for the YCB Video dataset. The
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version of the YCB Video dataset provided in the BOP benchmark [8,9] con-
tains a shifted coordinate system for YCB objects, which also affects the ground
truth. We thus train MoreFusion on the BOP version of the YCB Video dataset
and do not use its original pretrained model for this dataset. As MoreFusion
evaluated their approach using ground truth masks and we found significantly
lower performance when using MoreFusion with Mask R-CNN detections or Effi-
cientNet for initialization, we compare to MoreFusion using ground truth masks.
When using the Mask R-CNN detector for our method, CIR, EN, and SA-EN,
we set the detection threshold to 0.95 as we discovered a lower threshold would
sometimes lead to multiple detections of the same object in the same position,
which is an implausible initialization for our method.

As we process all objects in an image in parallel, the number of objects is
naturally limited by the available GPU memory. We observe that we can process
a maximum of 17 objects on a GPU with 80GB VRAM. Our method requires on
average 28.5 s while CIR needs 14.9 s per image for 100 frames from the Synpick
“Test Pick Targeted” split on an NVIDIA H100 GPU.

Penetration evaluation. We report penetration evaluation scores on the Synpick
dataset in Table 1. Our method reduces the absolute and relative penetration
between the objects compared to all baselines. We observe that our approach
outperforms EfficientNet (EN) [20], CIR [14], MoreFusion (MF) [23], and Spore-
Agent [3] with EfficientNet initialization (SA-EN) by approximately one order
of magnitude in both absolute and relative penetration. Note that in some cases,
not using the background box improves the penetration scores. This is due to the
evaluation only considering the detected objects without the background box.
Resolving penetrations with the box might thus lead to increased penetration
with other objects. In Fig. 5, we plot recall curves for the average and maximum
relative penetration. A recall of 1.0 for a threshold θ means that all images in
the dataset have an average/maximum relative penetration of at most θ. Our
approach achieves higher recall scores than EN, CIR, MF, and SA-EN across
the evaluation range. We further evaluate the penetration on the YCB Video
dataset from the BOP benchmark in Fig. 6. In addition to the approaches we
compared to on Synpick, we compare to SporeAgent with PoseCNN (SA-PC)
initialization. Our approach resolves penetrations better than all comparison
approaches, while CIR and the two SporeAgent variants perform approximately
on-par to each others.

Pose evaluation. While the focus of our method lies on physical plausibility, i.e.,
resolving penetrations between objects, we also evaluate the pose accuracy on
Synpick and YCB Video dataset. We show pose evaluation results in Tables 2
and 3. Our method improves CIR’s results slightly on the Synpick dataset (cf .
Table 2) and the YCB Video dataset (cf . Table 3). On Synpick, CIR and our
approach achieve better pose accuracy than SporeAgent and MoreFusion, even
when we use Mask R-CNN detections for our method and ground truth masks for
MoreFusion (cf . Table 2), indicating better generalization capabilities for CIR
and our method. Note that SporeAgent does not use texture for refinement,
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Table 1: Penetration evaluation on the Synpick dataset. The absolute penetration
error is given in mm3 and the relative penetration is a fraction of the object
volume. Lower values are better. We outperform all baselines, also indicating
that our approach generalizes well to the unseen data in Synpick.

Abs. Pen. Rel. Pen.
Avg. Max. Avg. Max.

Test Pick Untargeted

MFGT 6.46 · 103 5.39 · 105 1.27 · 10−2 7.84 · 10−1

EN 8.14 · 103 5.29 · 105 1.56 · 10−2 9.43 · 10−1

SA-EN 3.56 · 103 4.42 · 105 9.54 · 10−3 9.25 · 10−1

CIR 1.47 · 103 4.54 · 105 2.95 · 10−3 7.12 · 10−1

Ours 1.26 · 102 1.56 · 104 4.83 · 10−4
1.92 · 10−1

Ours−bg
1.11 · 102

1.40 · 104
4.25 · 10−4 3.00 · 10−1

Test Pick Targeted

MFGT 3.09 · 103 2.37 · 105 9.10 · 10−3 7.28 · 10−1

EN 6.91 · 103 8.14 · 105 1.46 · 10−2 8.16 · 10−1

SA-EN 2.72 · 103 3.08 · 105 7.48 · 10−3 8.87 · 10−1

CIR 8.78 · 102 3.10 · 105 3.32 · 10−3 4.77 · 10−1

Ours 7.25 · 101 1.14 · 104 4.31 · 10−4
1.10 · 10−1

Ours−bg
7.11 · 101

1.11 · 104 4.79 · 10−4 1.64 · 10−1

while our approach combines geometry and texture cues. On YCB Video, for
recall scores on the AD measure (Table 3 left), our method and CIR outperform
the comparison approaches (except for MF using ground truth segmentation).
When restricting the evaluation to objects with a ground-truth visibility of less
than 50%, we observe a larger improvement by our method for the recall AD
measure below two percent of object diameter (AD< 0.02), indicating that our
method manages to improve the accuracy when objects are not well visible.
We also observe this trend in Fig. 7. While our method performs on-par with
the baseline CIR in most cases, we see a larger gap for AD< 0.02 below a
visibility of 60%. Our method further consistently outperforms SA-EN with the
same initialization as our method and only falls behind SA-PC and MF at the
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Fig. 5: Penetration recall curves on the Synpick dataset. A recall of 1.0 means
that the average/maximum penetration in all frames is below the threshold on
the x-axis. Our method resolves a large fraction of penetration between objects,
even when the background box is not used for optimization (Ours−box). SA-EN
and MF do not resolve penetrations as well.
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Fig. 6: Penetration recall curves on the YCB Video dataset. A recall of 1.0 means
that the avg./max. penetration in all frames is below the threshold on the x-axis.
Our approach demonstrates the best performance.

Table 2: Pose evaluation results on Synpick. We report average recall scores
for the AD measure at different thresholds. Higher values are better. In these
cluttered scenes, our method consistently improves the results obtained by CIR.
Using the background box as additional cue does not have a large effect on the
results. EN, SA-EN, and MF with GT masks perform worse than our approach,
indicating that our approach generalizes better to the unseen dataset. All ap-
proaches are trained on YCB Video.

Test Pick Untargeted Test Pick Targeted
AD

< 0.02d
AD

< 0.05d
AD

< 0.1d
AD

< 0.02d
AD

< 0.05d
AD

< 0.1d

MFGT 0.408 0.511 0.582 0.394 0.494 0.595

EN 0.007 0.052 0.159 0.009 0.065 0.173
SA-EN 0.125 0.423 0.601 0.150 0.433 0.579
CIR 0.670 0.730 0.748 0.622 0.702 0.730
Ours 0.674 0.733 0.748 0.628 0.708 0.733

Ours−bg
0.675 0.732 0.748 0.626 0.707 0.732

higher distance thresholds of 5 and 10% object diameter. Note that SA-PC used
PoseCNN detections with different recall properties than EN, and MF used
ground truth detections and is thus expected to perform better. Under the AUC
measure for the ADD, AD, and ADI measures (Table 3 right), our method and
CIR achieves slightly lower scores than SA-PC. Note that this evaluation uses
the pipeline from PoseCNN [27], which differs in some points from the evaluation
using the BOP toolkit. In Table 3 (left), the AD scores are normalized by object
diameter and poses deviating more than 10% of the object diameter from the
ground truth are rejected as invalid. By contrast the PoseCNN evaluation in
Table 3 (right) does not normalize the poses and rejects poses further than
10cm away from the ground truth, i.e., being less strict.

5 Conclusion

We develop a novel approach to 6-DoF object pose refinement that includes
a penetration constraint directly in a neural render-and-compare pipeline. Our
method improves the results of the base approach CIR [14], especially in clut-
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Table 3: Pose evaluation on the YCB Video Dataset. Our method slightly im-
proves over the CIR baseline for AD recall scores. The improvement becomes
more noticeable at the lowest distance threshold when focusing on objects with
a visibility lower than 50% (highlighted in green). In the AUC recall evaluation,
we perform on-par with the baseline CIR and outperform the SA-EN. Note that
SA-PC uses a different detector.

Recall
all objects visibility < 0.5

AD
< 0.02d

AD
< 0.05d

AD
< 0.1d

AD
< 0.02d

AD
< 0.05d

AD
< 0.1d

MFGT 0.628 0.865 0.940 0.379 0.500 0.603

SA-PC 0.369 0.784 0.867 0.224 0.379 0.388
EN 0.057 0.260 0.522 0.000 0.017 0.043
SA-EN 0.401 0.811 0.886 0.181 0.216 0.216
CIR 0.704 0.904 0.915 0.147 0.224 0.233
Ours 0.708 0.908 0.916 0.216 0.224 0.233

Ours−bg 0.703 0.906 0.916 0.147 0.224 0.233

ADD
AUC

AD
AUC

ADI
AUC

MFGT
84.3 93.7 97.0

SA-PC 79.0 88.8 93.6
EN 60.1 69.7 79.7
SA-EN 73.9 84.5 90.1
CIR 75.5 86.3 90.9
Ours 75.6 86.4 90.9

Ours−bg 75.5 86.3 90.9
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Fig. 7: Pose recall depending on visibility on YCB Video. Our method performs
on-par with the baseline CIR and outperforms SA-EN consistently. At higher
distance thresholds, SA-PC and MF with ground-truth segmentation outperform
our method. We observe a larger improvement of our method over CIR at the
lowest distance threshold when the object visibility is lower than 60%.

tered scenes when the proximity of the objects aids pose estimation. Compared
to other approaches exploiting physical plausibility for 6 DoF pose estimation
(MoreFusion and SporeAgent), we observe that we resolve a larger fraction of the
penetrations between objects. Analyzing the pose accuracy, we observe that our
approach performs on par with the base approach, yielding slight improvements
in cluttered scenes when the surroundings of objects are helpful for pose estima-
tion. Limitations of our method are currently memory and runtime requirements.
In future work, further improvements in memory consumption might be achiev-
able by using neural implicit representations like DeepSDF [16] for representing
the objects. This might however come at the cost of higher computational ef-
fort for querying SDF values compared to trilinear interpolation lookups in our
precomputed grids. We anticipate that our results will be helpful in downstream
tasks, as the reduced penetrations allow for easier embedding of the estimated
objects, e.g ., in physical simulations.
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