The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns, the n-way equivalent of itemsets. More precisely, an n-set pattern consists of specific subsets of the n instance sets such that all possible associations between the corresponding instances are observed in the data. In contrast, traditional itemset mining approaches consider only two-way data, namely items versus transactions. The n-set patterns provide a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible associations have been recorded in the data. Second, we take association weights into account. In fact, we propose a method to enumerate all n-sets that satisfy a minimum threshold with respect to the average association weight. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world datasets from different domains.
Author(s): | Georgii, E. and Tsuda, K. and Schölkopf, B. |
Journal: | Machine Learning |
Volume: | 82 |
Number (issue): | 2 |
Pages: | 123-155 |
Year: | 2011 |
Month: | February |
Day: | 0 |
Bibtex Type: | Article (article) |
DOI: | 10.1007/s10994-010-5210-y |
Digital: | 0 |
Electronic Archiving: | grant_archive |
Language: | en |
Organization: | Max-Planck-Gesellschaft |
School: | Biologische Kybernetik |
Links: |
BibTex
@article{6848, title = {Multi-way set enumeration in weight tensors}, journal = {Machine Learning}, abstract = {The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns, the n-way equivalent of itemsets. More precisely, an n-set pattern consists of specific subsets of the n instance sets such that all possible associations between the corresponding instances are observed in the data. In contrast, traditional itemset mining approaches consider only two-way data, namely items versus transactions. The n-set patterns provide a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible associations have been recorded in the data. Second, we take association weights into account. In fact, we propose a method to enumerate all n-sets that satisfy a minimum threshold with respect to the average association weight. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world datasets from different domains.}, volume = {82}, number = {2}, pages = {123-155}, organization = {Max-Planck-Gesellschaft}, school = {Biologische Kybernetik}, month = feb, year = {2011}, slug = {6848}, author = {Georgii, E. and Tsuda, K. and Sch{\"o}lkopf, B.}, month_numeric = {2} }