Architectured Materials and Multifunctional Designs: Foams, Wools and Interlocked Materials (Max Planck Lecture)
- Prof. Dr. Yves Bréchet
- SIMAP, Grenoble Institute of Technology, France
Developing new materials via a better understanding of the mechanisms underlying macroscopic properties has been the Graal of materials science. The most prominent effort in Materials Science has been toward a better control of the microstructure, toward smaller and smaller scales, and in recent years, toward nanomaterials.
In Structural Mechanics, shape optimisation has played a similar role in providing an optimised used of matter to develop very large structures. The intermediate scale, that we will call "Millimaterials", offer a number of opportunities for new materials development. Materials with a millimetric architecture such as foams, felts, lattices can be used for sound absorbers.
Interlocked Materialsmay provide damage tolerance to intrinsically brittle materials. Graded Materials can provide good compromises for high strength materials. But optimaldisign of this new class of materials, able to fill important "gaps"in Materials properties space, requires an intensive use of medelling. Physically based modelling as a guide to architectured materials optimisation strategy will be illustrated on example like felts, hollow spheres foams, interlocked materials.