Probing nonlinear computations in the retina at single cell resolutionBernstein lecture, 12 July, 18:15, Children's Hospital.

A central aspect of visual processing in the retina is the existence of nonlinear subunits within the receptive fields of retinal ganglion cells. These subunits have been implicated in visual computations such as segregation of object motion from background motion. However, relatively little is known about the spatial structure of subunits and its emergence from nonlinear interactions in the interneuron circuitry of the retina.
We used physiological measurements of functional circuitry in the isolated primate retina at single-cell resolution, combined with novel computational approaches, to explore the neural computations that produce subunits. Preliminary results suggest that these computations can be understood in terms of convergence of photoreceptor signals via specific types of interneurons to ganglion cells.
Speaker Biography
E.J. Chichilnisky (Salk Institute for Biological Studies, La Jolla, CA, USA)