Empirical Inference Members Publications

Astronomy

Gw150914 posterior 5
Posterior distribution over astrophysical binary black hole parameters for GW150914. Our method (orange) shows excellent agreement with LALInference (blue), while reducing inference times from days to a minute per event. Left panel: black-hole mass and spin parameters. Right panel: sky position of the gravitational wave. Contours represent 50% and 90% credible regions.

Members

Publications

Empirical Inference Article Real-time gravitational wave science with neural posterior estimation Dax, M., Green, S. R., Gair, J., Macke, J. H., Buonanno, A., Schölkopf, B. Physical Review Letters, 127(24), December 2021 (Published) arXiv DOI URL BibTeX

Empirical Inference Article Enhancing gravitational-wave science with machine learning Cuoco, E., Powell, J., Cavaglià, M., Ackley, K., Bejger, M., Chatterjee, C., Coughlin, M., Coughlin, S., Easter, P., Essick, R., et al. Machine Learning: Science and Technology, 2(1), 2020 (Published) DOI BibTeX

Empirical Inference Conference Paper Physically constrained causal noise models for high-contrast imaging of exoplanets Gebhard, T. D., Bonse, M. J., Quanz, S. P., Schölkopf, B. Machine Learning and the Physical Sciences - Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (Published) arXiv BibTeX

Empirical Inference Article Convolutional neural networks: A magic bullet for gravitational-wave detection? Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B. Physical Review D, 100(6):article no. 063015, American Physical Society, September 2019 (Published) DOI URL BibTeX

Empirical Inference Conference Paper ConvWave: Searching for Gravitational Waves with Fully Convolutional Neural Nets Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I., Schölkopf, B. Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems, December 2017 (Published) URL BibTeX

Empirical Inference Article A Causal, Data-driven Approach to Modeling the Kepler Data Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B. Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016, Astrophysics Source Code Library ascl: 2107.024 (Published) DOI URL BibTeX

Empirical Inference Probabilistic Numerics Article Gaussian Process-Based Predictive Control for Periodic Error Correction Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P. IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (Published) PDF DOI BibTeX

Empirical Inference Article Modeling Confounding by Half-Sibling Regression Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J. Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (Published) Code DOI URL BibTeX

Empirical Inference Article The population of long-period transiting exoplanets Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B. The Astronomical Journal, 152(6):article no. 206, 2016 (Published) URL BibTeX

Empirical Inference Article A systematic search for transiting planets in the K2 data Foreman-Mackey, D., Montet, B., Hogg, D., Morton, T., Wang, D., Schölkopf, B. The Astrophysical Journal, 806(2), 2015 (Published) DOI URL BibTeX