Back
Hugs are one of the first forms of contact and affection humans experience. Receiving a hug is one of the best ways to feel socially supported, and the lack of social touch can have severe adverse effects on an individual's well-being. Due to the prevalence and health benefits of hugging, roboticists are interested in creating robots that can hug humans as seamlessly as humans hug other humans. However, hugs are complex affective interactions that need to adapt to the height, body shape, and preferences of the hugging partner, and they often include intra-hug gestures like squeezes. This dissertation aims to create a series of hugging robots that use visual and haptic perception to provide enjoyable interactive hugs. Each of the four presented HuggieBot versions is evaluated by measuring how users emotionally and behaviorally respond to hugging it; HuggieBot 4.0 is explicitly compared to a human hugging partner using physiological measures. Building off research both within and outside of human-robot interaction (HRI), this thesis proposes eleven tenets of natural and enjoyable robotic hugging. We believe these eleven tenets are essential to delivering high-quality robot hugs. Their presence results in a hug that pleases the user, and their absence results in a hug that is likely to be inadequate. We present these tenets as guidelines for future hugging robot creators to follow when designing new hugging robots to ensure user acceptance. We tested the four versions of HuggieBot through six user studies. First, we analyzed data collected in a previous study with a modified Willow Garage Personal Robot 2 (PR2) to evaluate human responses to different robot physical characteristics and hugging behaviors. Then, we created three versions of an entirely new robotic platform, HuggieBot 2.0, 3.0, and 4.0. Each subsequent improved version of HuggieBot was informed by the learnings of the previous user studies and the resulting tenets. To enable perceptive and pleasing autonomous robot behavior, we investigated robot responses to four human intra-hug gestures: holding, rubbing, patting, and squeezing. We developed a perceptual algorithm that classifies user actions with 88% accuracy using the robot's inflated torso's microphone and pressure sensor collected data. We also created a probabilistic behavior algorithm that chooses robot responses in real time. In our sixth user study, using the final version of the robotic platform, HuggieBot 4.0, we investigated the emotional and physiological effects of hugging a robot compared to the effects of hugging a friendly but unfamiliar person. We continuously monitored participant heart rate and collected saliva samples at seven time points across the 3.5-hour study to measure the temporal evolution of cortisol and oxytocin. We used an adapted Trier Social Stress Test (TSST) protocol to reliably and ethically induce stress in the participants. They then experienced one of five different hug intervention methods before all interacting with HuggieBot 4.0. The results of these six user studies validated our eleven hugging tenets and informed the iterative design of HuggieBot. We see that users enjoy robot softness, robot warmth, and being physically squeezed by the robot. Users dislike being released too soon from a hug and equally dislike being held by the robot for too long. Adding haptic reactivity definitively improves user perception of a hugging robot; the robot's responses and proactive intra-hug gestures were greatly enjoyed. In our last study, we learned that HuggieBot can positively affect users on a physiological level and is somewhat comparable to hugging a person. Participants have more favorable opinions about hugging robots after prolonged interaction with HuggieBot in all of our research studies.
Hugs are one of the first forms of contact and affection humans experience. Receiving a hug is one of the best ways to feel socially supported, and the lack of social touch can have severe adverse effects on an individual's well-being. Due to the prevalence and health benefits of hugging, roboticists are interested in creating robots that can hug humans as seamlessly as humans hug other humans. However, hugs are complex affective interactions that need to adapt to the height, body shape, and preferences of the hugging partner, and they often include intra-hug gestures like squeezes. This dissertation aims to create a series of hugging robots that use visual and haptic perception to provide enjoyable interactive hugs. Each of the four presented HuggieBot versions is evaluated by measuring how users emotionally and behaviorally respond to hugging it; HuggieBot 4.0 is explicitly compared to a human hugging partner using physiological measures.
Building off research both within and outside of human-robot interaction (HRI), this thesis proposes eleven tenets of natural and enjoyable robotic hugging. We believe these eleven tenets are essential to delivering high-quality robot hugs. Their presence results in a hug that pleases the user, and their absence results in a hug that is likely to be inadequate. We present these tenets as guidelines for future hugging robot creators to follow when designing new hugging robots to ensure user acceptance.
We tested the four versions of HuggieBot through six user studies. First, we analyzed data collected in a previous study with a modified Willow Garage Personal Robot 2 (PR2) to evaluate human responses to different robot physical characteristics and hugging behaviors. Then, we created three versions of an entirely new robotic platform, HuggieBot 2.0, 3.0, and 4.0. Each subsequent improved version of HuggieBot was informed by the learnings of the previous user studies and the resulting tenets. To enable perceptive and pleasing autonomous robot behavior, we investigated robot responses to four human intra-hug gestures: holding, rubbing, patting, and squeezing. We developed a perceptual algorithm that classifies user actions with 88% accuracy using the robot's inflated torso's microphone and pressure sensor collected data. We also created a probabilistic behavior algorithm that chooses robot responses in real time.
In our sixth user study, using the final version of the robotic platform, HuggieBot 4.0, we investigated the emotional and physiological effects of hugging a robot compared to the effects of hugging a friendly but unfamiliar person. We continuously monitored participant heart rate and collected saliva samples at seven time points across the 3.5-hour study to measure the temporal evolution of cortisol and oxytocin. We used an adapted Trier Social Stress Test (TSST) protocol to reliably and ethically induce stress in the participants. They then experienced one of five different hug intervention methods before all interacting with HuggieBot 4.0.
The results of these six user studies validated our eleven hugging tenets and informed the iterative design of HuggieBot. We see that users enjoy robot softness, robot warmth, and being physically squeezed by the robot. Users dislike being released too soon from a hug and equally dislike being held by the robot for too long. Adding haptic reactivity definitively improves user perception of a hugging robot; the robot's responses and proactive intra-hug gestures were greatly enjoyed. In our last study, we learned that HuggieBot can positively affect users on a physiological level and is somewhat comparable to hugging a person. Participants have more favorable opinions about hugging robots after prolonged interaction with HuggieBot in all of our research studies.