Back
Remote Sensing Feature Selection by Kernel Dependence Estimation
This letter introduces a nonlinear measure of independence between random variables for remote sensing supervised feature selection. The so-called HilbertSchmidt independence criterion (HSIC) is a kernel method for evaluating statistical dependence and it is based on computing the HilbertSchmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is easy to compute and has good theoretical and practical properties. Rather than using this estimate for maximizing the dependence between the selected features and the class labels, we propose the more sensitive criterion of minimizing the associated HSIC p-value. Results in multispectral, hyperspectral, and SAR data feature selection for classification show the good performance of the proposed approach.
@article{6263, title = {Remote Sensing Feature Selection by Kernel Dependence Estimation}, journal = {IEEE Geoscience and Remote Sensing Letters}, abstract = {This letter introduces a nonlinear measure of independence between random variables for remote sensing supervised feature selection. The so-called HilbertSchmidt independence criterion (HSIC) is a kernel method for evaluating statistical dependence and it is based on computing the HilbertSchmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is easy to compute and has good theoretical and practical properties. Rather than using this estimate for maximizing the dependence between the selected features and the class labels, we propose the more sensitive criterion of minimizing the associated HSIC p-value. Results in multispectral, hyperspectral, and SAR data feature selection for classification show the good performance of the proposed approach.}, volume = {7}, number = {3}, pages = {587-591}, organization = {Max-Planck-Gesellschaft}, school = {Biologische Kybernetik}, month = jul, year = {2010}, slug = {6263}, author = {Camps-Valls, G. and Mooij, JM. and Sch{\"o}lkopf, B.}, month_numeric = {7} }