Back
Approximation Bounds for Inference using Cooperative Cut
We analyze a family of probability distributions that are characterized by an embedded combinatorial structure. This family includes models having arbitrary treewidth and arbitrary sized factors. Unlike general models with such freedom, where the “most probable explanation” (MPE) problem is inapproximable, the combinatorial structure within our model, in particular the indirect use of submodularity, leads to several MPE algorithms that all have approximation guarantees.
@inproceedings{JegelkaB2011_2, title = {Approximation Bounds for Inference using Cooperative Cut}, abstract = {We analyze a family of probability distributions that are characterized by an embedded combinatorial structure. This family includes models having arbitrary treewidth and arbitrary sized factors. Unlike general models with such freedom, where the “most probable explanation” (MPE) problem is inapproximable, the combinatorial structure within our model, in particular the indirect use of submodularity, leads to several MPE algorithms that all have approximation guarantees. }, pages = {577-584}, editors = {Getoor, L. , T. Scheffer}, publisher = {International Machine Learning Society}, address = {Madison, WI, USA}, month = jul, year = {2011}, slug = {jegelkab2011_2}, author = {Jegelka, S. and Bilmes, J.}, month_numeric = {7} }