Back
Semi-Automated Robotic Pleural Cavity Access in Space
Astronauts are at risk for pneumothorax, a medical condition where air accumulating between the chest wall and the lungs impedes breathing and can result in fatality. Treatments include needle decompression (ND) and chest tube insertion (tube thoracostomy, TT). Unfortunately, the literature reports very high failure rates for ND and high complication rates for TT– especially whenn performed urgently, infrequently, or by inexperienced operators. These statistics are problematic in the context of skill retention for physician astronauts on long-duration exploration-class missions, or for non-medical astronauts if the physician astronaut is the one in need of treatment. We propose reducing the medical risk for exploration-class missions by improving ND/TT outcomes using a robot-based paradigm that automates tool depth control. Our goal is to produce a robotic system that improves the safety of pneumothorax treatments regardless of operator skill and without the use of ground resources. This poster provides an overview of our team's work toward this goal, including robot instrumentation schemes, tool-tissue interaction characterization, and automated puncture detection.
@misc{Lorsa22-CSHRSA-Semi, title = {Semi-Automated Robotic Pleural Cavity Access in Space}, abstract = {Astronauts are at risk for pneumothorax, a medical condition where air accumulating between the chest wall and the lungs impedes breathing and can result in fatality. Treatments include needle decompression (ND) and chest tube insertion (tube thoracostomy, TT). Unfortunately, the literature reports very high failure rates for ND and high complication rates for TT– especially whenn performed urgently, infrequently, or by inexperienced operators. These statistics are problematic in the context of skill retention for physician astronauts on long-duration exploration-class missions, or for non-medical astronauts if the physician astronaut is the one in need of treatment. We propose reducing the medical risk for exploration-class missions by improving ND/TT outcomes using a robot-based paradigm that automates tool depth control. Our goal is to produce a robotic system that improves the safety of pneumothorax treatments regardless of operator skill and without the use of ground resources. This poster provides an overview of our team's work toward this goal, including robot instrumentation schemes, tool-tissue interaction characterization, and automated puncture detection.}, howpublished = {Poster presented at the Canadian Space Health Research Symposium (CSHRS)}, organization = {Canadian Space Health Research Network}, address = {Alberta, Canada}, month = nov, year = {2022}, slug = {lorsa22-cshrsa-semi}, author = {L’Orsa, Rachael and de Lotbiniere-Bassett, Madeleine and Zareinia, Kourosh and Lama, Sanju and Westwick, David and Sutherland, Garnette and Kuchenbecker, Katherine J.}, month_numeric = {11} }