Back
Discriminative frequent subgraph mining with optimality guarantees
The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.
@article{ThomaCGHKSSYYB2010, title = {Discriminative frequent subgraph mining with optimality guarantees}, journal = {Journal of Statistical Analysis and Data Mining}, abstract = {The goal of frequent subgraph mining is to detect subgraphs that frequently occur in a dataset of graphs. In classification settings, one is often interested in discovering discriminative frequent subgraphs, whose presence or absence is indicative of the class membership of a graph. In this article, we propose an approach to feature selection on frequent subgraphs, called CORK, that combines two central advantages. First, it optimizes a submodular quality criterion, which means that we can yield a near-optimal solution using greedy feature selection. Second, our submodular quality function criterion can be integrated into gSpan, the state-of-the-art tool for frequent subgraph mining, and help to prune the search space for discriminative frequent subgraphs even during frequent subgraph mining.}, volume = {3}, number = {5}, pages = {302–318}, month = oct, year = {2010}, slug = {thomacghkssyyb2010}, author = {Thoma, M. and Cheng, H. and Gretton, A. and Han, J. and Kriegel, H-P. and Smola, AJ. and Song, L. and Yu, PS. and Yan, X. and Borgwardt, KM.}, month_numeric = {10} }