Back
Biological motion is fascinating in almost every aspect you look upon it. Especially locomotion plays a crucial part in the evolution of life. Structures, like the bones connected by joints, soft and connective tissues and contracting proteins in a muscle-tendon unit enable and prescribe the respective species' specific locomotion pattern. Most importantly, biological motion is autonomously learned, it is untethered as there is no external energy supply and typical for vertebrates, it's muscle-driven. This talk is focused on human motion. Digital models and biologically inspired robots are presented, built for a better understanding of biology’s complexity. Modeling musculoskeletal systems reveals that the mapping from muscle stimulations to movement dynamics is highly nonlinear and complex, which makes it difficult to control those systems with classical techniques. However, experiments on a simulated musculoskeletal model of a human arm and leg and real biomimetic muscle-driven robots show that it is possible to learn an accurate controller despite high redundancy and nonlinearity, while retaining sample efficiency. More examples on active muscle-driven motion will be given.
Prof. Syn Schmitt (University of Stuttgart)
Syn Schmitt studied physics at the University of Stuttgart and graduated from the University of Tuebingen with a PhD in Theoretical Astrophysics (topic: muscle modelling / computational biophysics). In 2012, Schmitt was appointed as Juniorprofessor (assistant professor) at the University of Stuttgart. Since 2018, he is full professor of "Computational Biophysics and Biorobotics" at the University of Stuttgart and in 2019 he founded the Institute for Modelling and Simulation of Biomechanical Systems, together with his colleague Oliver Roehrle. Syn Schmitt is fellow of the Stuttgart Center for Simulation Science (SimTech) and a faculty member of the International Max Planck Research School for Intelligent Systems (IMPRS-IS). Recently, he was appointed as Adjunct Professor in the School of Chemistry, Physics and Mechanical Engineering of the Queensland University of Technology in Brisbane, Australia. His research focusses on autonomous muscle-driven motion with special interests in design principles of the locomotion apparatus, non-linear dynamics of locomotion, motor control and morphological computation in biological and technical systems.