Back
The problem of text normalization is simple to understand: transform a given arbitrary text into its spoken form. In the context of text-to-speech systems – that we will focus on – this can be exemplified by turning the text “$200” into “two hundred dollars”. Lately, the interest of solving this problem with deep learning techniques has raised since it is a highly context-dependent problem that is still being solved by ad-hoc solutions. So much so that Google even started a contest in the web Kaggle to solve this problem. In this talk we will see how this problem has been approached as part of a Master thesis. Namely, the problem is tackled as if it were an automatic translation problem from English to normalized English, and so the architecture proposed is a neural machine translation architecture with the addition of traditional attention mechanisms. This network is typically composed of an encoder and a decoder, where both of them are multi-layer LSTM networks. As part of this work, and with the aim of proving the feasibility of convolutional neural networks in natural-language processing problems, we propose and compare different architectures for the encoder based on convolutional networks. In particular, we propose a new architecture called Causal Feature Extractor which proves to be a great encoder as well as an attention-friendly architecture.
Adrián Javaloy (University of Murcia)
MSc Student