Back
Semiconductor light emitters, based on single crystal epitaxial inorganic semiconductor heterostructures are ubiquitous. In spite of their extraordinary versatility and technological maturity, penetrating the full visible spectrum using a single material system for red, green, and blue (RGB) in a seamless way remains, nonetheless, an elusive challenge.
Semiconductor nanocrystals, or quantum dots (QDs), synthesized by solution-based methods of colloidal chemistry represent a strongly contrasting basis for active optical materials. While possessing an ability to absorb and efficiently luminesce across the RGB by simple nanocrystal particle size control within a single material system, these preparations have yet to make a significant impact as viable light emitting devices, mainly due to the difficulties in casting such materials from their natural habitat, that is “from the chemist’s bottle” to a useful solid thin film form for device use. In this presentation we show how II-VI compound nanocrystals can be transitioned to solid templates with targeted spatial control and placeme
Arto Nurmikko (School of Engineering and Brain Sciences Institute, Brown University, USA)