Back
The recent theory of compressive sensing predicts that (approximately) sparse vectors can be recovered from vastly incomplete linear measurements using efficient algorithms. This principle has a large number of potential applications in signal and image processing, machine learning and more. Optimal measurement matrices in this context known so far are based on randomness. Recovery algorithms include convex optimization approaches (l1-minimization) as well as greedy methods. Gaussian and Bernoulli random matrices are provably optimal in the sense that the smallest possible number of samples is required. Such matrices, however, are of limited practical interest because of the lack of any structure. In fact, applications demand for certain structure so that there is only limited freedom to inject randomness. We present recovery results for various structured random matrices including random partial Fourier matrices and partial random circulant matrices. We will also review recent extensions of compressive sensing for recovering matrices of low rank from incomplete information via efficient algorithms such as nuclear norm minimization. This principle has recently found applications for phaseless estimation, i.e., in situations where only the magnitude of measurements is available. Another extension considers the recovery of low rank tensors (multi-dimensional arrays) from incomplete linear information. Several obstacles arise when passing from matrices and tensors such as the lack of a singular value decomposition which shares all the nice properties of the matrix singular value decomposition. Although only partial theoretical results are available, we discuss algorithmic approaches for this problem.
Holger Rauhut (Universität Bonn, Institut für Numerische Simulation)