Back
Point-light walkers and stick figures rendered orthographically and without self-occlusion do not contain any information as to their depth. For instance, a frontoparallel projection could depict a walker from the front or from the back. Nevertheless, observers show a strong bias towards seeing the walker as facing the viewer. A related stimulus, the silhouette of a human figure, does not seem to show such a bias. We develop these observations into a tool to study the cause of the facing the viewer bias observed for biological motion displays.
I will give a short overview about existing theories with respect to the facing-the-viewer bias, and about a number of findings that seem hard to explain with any single one of them. I will then present the results of our studies on both stick figures and silhouettes which gave rise to a new theory about the facing the viewer bias, and I will eventually present an experiment that tests a hypothesis resulting from it. The studies are discussed in the context of one of the most general problems the visual system has to solve: How do we disambiguate an initially ambiguous sensory world and eventually arrive at the perception of a stable, predictable "reality"?
Nikolaus Troje (Department of Psychology, Queen's University, Canada)