Back
Deep Learning is one of the most successful machine learning approaches to artificial intelligence. In this talk I discuss the geometry of neural networks as a way to study the success of Deep Learning at a mathematical level and to develop a theoretical basis for making further advances, especially in situations with limited amounts of data and challenging problems in reinforcement learning. I present a few recent results on the representational power of neural networks and then demonstrate how to align this with structures from perception-action problems in order to obtain more efficient learning systems.
Guido Montúfar (Max Planck Institute for Mathematics in the Sciences)