Back
Abstract: I will present a general framework for modelling and recovering 3D shape and pose using subdivision surfaces. To demonstrate this frameworks generality, I will show how to recover both a personalized rigged hand model from a sequence of depth images and a blend shape model of dolphin pose from a collection of 2D dolphin images. The core requirement is the formulation of a generative model in which the control vertices of a smooth subdivision surface are parameterized (e.g. with joint angles or blend weights) by a differentiable deformation function. The energy function that falls out of measuring the deviation between the surface and the observed data is also differentiable and can be minimized through standard, albeit tricky, gradient based non-linear optimization from a reasonable initial guess. The latter can often be obtained using machine learning methods when manual intervention is undesirable. Satisfyingly, the "tricks" involved in the former are elegant and widen the applicability of these methods.
Jonathan Taylor (Microsoft Research Cambridge)