Perceiving Systems Talk Biography
22 January 2013

Large-scale and weakly supervised learning of objects and actions

Cordelia

We, first, address the problems of large scale image classification. We present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We show and interpret the importance of an appropriate vector normalization.

Furthermore, we discuss how to learn given a large number of classes and images with stochastic gradient descent and show results on ImageNet10k. We, then, present a weakly supervised approach for learning human actions modeled as interactions between humans and objects.

Our approach is human-centric: we first localize a human in the image and then determine the object relevant for the action and its spatial relation with the human. The model is learned automatically from a set of still images annotated (only) with the action label.

Finally, we present work on learning object detectors from realworld web videos known only to contain objects of a target class. We propose a fully automatic pipeline that localizes objects in a set of videos of the class and learns a detector for it. The approach extracts candidate spatio-temporal tubes based on motion segmentation and then selects one tube per video jointly over all videos.

Speaker Biography

Cordelia Schmid (INRIA)