Back
Enabling computers to understand human behavior has the potential to revolutionize many areas that benefit society such as clinical diagnosis, human computer interaction, and social robotics. A critical element in the design of any behavioral sensing system is to find a good representation of the data for encoding, segmenting, classifying and predicting subtle human behavior.
In this talk I will propose several extensions of Component Analysis (CA) techniques (e.g., kernel principal component analysis, support vector machines, spectral clustering) that are able to learn spatio-temporal representations or components useful in many human sensing tasks. In the first part of the talk I will give an overview of several ongoing projects in the CMU Human Sensing Laboratory, including our current work on depression assessment from video, as well as hot-flash detection from wearable sensors.
In the second part of the talk I will show how several extensions of the CA methods outperform state-of-the-art algorithms in problems such as temporal alignment of human motion, temporal segmentation/clustering of human activities, joint segmentation and classification of human behavior, facial expression analysis, and facial feature detection in images. The talk will be adaptive, and I will discuss the topics of major interest to the audience.
Fernando De La Torre (Carnegie Mellon University, School of Computer Science, USA)