Back
I will talk about two types of machine learning problems, which are important but have received little attention. The first are problems naturally formulated as learning a one-to-many mapping, which can handle the inherent ambiguity in tasks such as generating segmentations or captions for images. A second problem involves learning representations that are invariant to certain nuisance or sensitive factors of variation in the data while retaining as much of the remaining information as possible. The primary approach we formulate for both problems is a constrained form of joint embedding in a deep generative model, that can develop informative representations of sentences and images. Applications discussed will include image captioning, question-answering, segmentation, classification without discrimination, and domain adaptation.
Rich Zemel (University of Toronto, Canada)