Back
(joint work with Jan. C. Neddermeyer) A technique for online estimation of spot volatility for high-frequency data is developed. The algorithm works directly on the transaction data and updates the volatility estimate immediately after the occurrence of a new transaction. Furthermore, a nonlinear market microstructure noise model is proposed that reproduces several stylized facts of high frequency data. A computationally efficient particle filter is used that allows for the approximation of the unknown efficient prices and, in combination with a recursive EM algorithm, for the estimation of the volatility curve. We neither assume that the transaction times are equidistant nor do we use interpolated prices. We also make a distinction between volatility per time unit and volatility per transaction and provide estimators for both. More precisely we use a model with random time change where spot volatility is decomposed into spot volatility per transaction times the trading intensity - thus highlighting the influence of trading intensity on volatility.
Rainer Dahlhaus (Institute of Applied Mathematics, Mathematical Statistics Group, University of Heidelberg)