Perceiving Systems IS Colloquium Biography
28 April 2014 at 11:15 - 12:15 | Max Planck House Lecture Hall

WaldBoost: Combining Sequential Analysis with Machine Learning for Solving Time-constrained Vision Problems

Jiri

Computer vision problems often involve optimization of two quantities, one of which is time. Such problems can be formulated as time-constrained optimization or performance-constrained search for the fastest algorithm. We show that it is possible to obtain quasi-optimal time-constrained solutions to some vision problems by applying Wald's theory of sequential decision-making. Wald assumes independence of observation, which is rarely true in computer vision. We address the problem by combining Wald's sequential probability ratio test and AdaBoost. The solution, called the WaldBoost, can be viewed as a principled way to build a close-to-optimal “cascade of classifiers” of the Viola-Jones type. The approach will be demonstrated on four tasks: (i) face detection, (ii) establishing reliable correspondences between image, (iii) real-time detection of interest points and (iv) model search and outlier detection using RANSAC. In the face detection problem, the objective is learning the fastest detector satisfying constraints on false positive and false negative rates. The correspondence pruning addresses the problem of fast selection with a predefined false negative rated. In interest point problem we show how a fast implementation of known detectors can obtained by Waldboost. The “mimicked” detectors provide a training set of positive and negative examples of interest ponts and WaldBoost learns a detector, (significantly) faster than the providers of the training set, formed as a linear combination of efficiently computable feature. In RANSAC, we show how to exploit Wald's test in a randomised model verification procedure to obtain an algorithm significantly faster than deterministic verification yet with equivalent probabilistic guarantees of correctness.

Speaker Biography

Jiri Matas (Czech Technical University, Prague)