Mohammad Amin Charusaie

Human Aspects of Machine Learning Doctoral Researcher

I am a first-year PhD student at Max Planck Institute for Intelligent Systems, working on Human-AI teaming. I recieved an M.Sc. degree in Electrical Engineering (Information Theory and Signal Processing) from Sharif University of Technology in Jan. 2019. Prior to that, I graduated from Isfahan University of Technology with a B.Sc. degree in Electrical Engineering (Communications). During my masters, my research interests included sparse stochastic processes, data compression, and high-dimensional statistics.

 

You can find more about me on my personal webpage.

`; return; } if (tabId === 'publicatons') { // Fix spelling here contentDiv.innerHTML = `
Empirical Inference Human Aspects of Machine Learning Conference Paper Hermite Polynomial Features for Private Data Generation Vinaroz*, M., Charusaie*, M., Harder, F., Adamczewski, K., Park, M. J. Proceedings of the 39th International Conference on Machine Learning (ICML), 162:22300-22324, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan), PMLR, July 2022, *equal contribution (Published) URL BibTeX

Human Aspects of Machine Learning Article Compressibility Measures for Affinely Singular Random Vectors Charusaie, M., Amini, A., Rini, S. IEEE Transactions on Information Theory, 68(9):6245-6275, IEEE, 2022 (Published) DOI BibTeX

Human Aspects of Machine Learning Conference Paper Sample Efficient Learning of Predictors that Complement Humans Charusaie*, M., Mozannar*, H., Sontag, D., Samadi, S. Proceedings of the 39th International Conference on Machine Learning (ICML), 162:2972-3005, Proceedings of Machine Learning Research , PMLR, 39th International Conference on Machine Learning (ICML 2022) , 2022 (Published) URL BibTeX

Human Aspects of Machine Learning Conference Paper On the Compressibility of Affinely Singular Random Vectors Charusaie, M., Rini, S., Amini, A. On the Compressibility of Affinely Singular Random Vectors, :2240-2245, 2020 () DOI BibTeX

`; return; } fetch(`/people/fetch_tab_content/${tabId}`) .then(response => { if (!response.ok) { throw new Error('Failed to load content'); } return response.json(); }) .then(data => { // Update the content div with the fetched content contentDiv.innerHTML = `${data.content}`; // contentElement.innerHTML = data.rendered_content; }) .catch(error => { console.error('Error:', error); contentDiv.innerHTML = '

Error loading content. Please try again later.

'; }); }