Article 2018

High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T

{Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T2 relaxation effects) and presents the first metabolite maps acquired at 9.4 T in the healthy human brain at both high (voxel size of 97.6 $\micro$L) and ultra-high (voxel size of 24.4 $\micro$L) spatial resolutions in a scan time of 11 and 46 min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided.}

Author(s): Nassirpour, S and Chang, P and Henning, A
Journal: {NeuroImage}
Volume: 168
Pages: 211--221
Year: 2018
Bibtex Type: Article (article)
DOI: 10.1016/j.neuroimage.2016.12.065
Electronic Archiving: grant_archive

BibTex

@article{NassirpourCH2016,
  title = {{High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T}},
  journal = {{NeuroImage}},
  abstract = {{Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T2 relaxation effects) and presents the first metabolite maps acquired at 9.4 T in the healthy human brain at both high (voxel size of 97.6 $\micro$L) and ultra-high (voxel size of 24.4 $\micro$L) spatial resolutions in a scan time of 11 and 46 min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided.}},
  volume = {168},
  pages = {211--221},
  year = {2018},
  slug = {nassirpourch2016},
  author = {Nassirpour, S and Chang, P and Henning, A}
}