Back
In this talk we present some recent results on human action recognition in videos. We, first, show how to use human pose for action recognition. To this end we propose a new pose-based convolutional neural network descriptor for action recognition, which aggregates motion and appearance information along tracks of human body parts. Next, we present an approach for spatio-temporal action localization in realistic videos. The approach first detects proposals at the frame-level and then tracks high-scoring proposals in the video. Our tracker relies simultaneously on instance-level and class-level detectors. Action are localized in time with a sliding window approach at the track level. Finally, we show how to extend this method to weakly supervised learning of actions, which allows to scale to large amounts of data without manual annotation.
Cordelia Schmid (INRIA Research Director)
Humboldt Fellow