Back
Predicting Structured Data
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learnings greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.
@book{4269, title = {Predicting Structured Data}, abstract = {Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learnings greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.}, pages = {360}, series = {Advances in neural information processing systems}, publisher = {MIT Press}, organization = {Max-Planck-Gesellschaft}, school = {Biologische Kybernetik}, address = {Cambridge, MA, USA}, month = sep, year = {2007}, slug = {4269}, author = {Bakir, GH. and Hofmann, T. and Sch{\"o}lkopf, B. and Smola, AJ. and Taskar, B. and Vishwanathan, SVN.}, month_numeric = {9} }