Back
Efficient Learning on Point Clouds with Basis Point Sets
Basis Point Set (BPS) is a simple and efficient method for encoding 3D point clouds into fixed-length representations. It is based on a simple idea: select k fixed points in space and compute vectors from these basis points to the nearest points in a point cloud; use these vectors (or simply their norms) as features. The basis points are kept fixed for all the point clouds in the dataset, providing a fixed representation of every point cloud as a vector. This representation can then be used as input to arbitrary machine learning methods, in particular it can be used as input to off-the-shelf neural networks.
Basis Point Set (BPS) is a simple and efficient method for encoding 3D point clouds into fixed-length representations.
It is based on a simple idea: select k fixed points in space and compute vectors from these basis points to the nearest points in a point cloud; use these vectors (or simply their norms) as features. The basis points are kept fixed for all the point clouds in the dataset, providing a fixed representation of every point cloud as a vector.
This representation can then be used as input to arbitrary machine learning methods, in particular it can be used as input to off-the-shelf neural networks.
Below are the key differences between standard occupancy voxels, TSDF and the proposed BPS representation:
Check our ICCV 2019 paper and corresponding GitHub repository for more details.