Natural and Robust Walking using Reinforcement Learning without Demonstrations in High-Dimensional Musculoskeletal Models
2024
Miscellaneous
al
Humans excel at robust bipedal walking in complex natural environments. In each step, they adequately tune the interaction of biomechanical muscle dynamics and neuronal signals to be robust against uncertainties in ground conditions. However, it is still not fully understood how the nervous system resolves the musculoskeletal redundancy to solve the multi-objective control problem considering stability, robustness, and energy efficiency. In computer simulations, energy minimization has been shown to be a successful optimization target, reproducing natural walking with trajectory optimization or reflex-based control methods. However, these methods focus on particular motions at a time and the resulting controllers are limited when compensating for perturbations. In robotics, reinforcement learning~(RL) methods recently achieved highly stable (and efficient) locomotion on quadruped systems, but the generation of human-like walking with bipedal biomechanical models has required extensive use of expert data sets. This strong reliance on demonstrations often results in brittle policies and limits the application to new behaviors, especially considering the potential variety of movements for high-dimensional musculoskeletal models in 3D. Achieving natural locomotion with RL without sacrificing its incredible robustness might pave the way for a novel approach to studying human walking in complex natural environments. Videos: this https://sites.google.com/view/naturalwalkingrl
Year: | 2024 |
Department(s): | Autonomous Learning |
Bibtex Type: | Miscellaneous (misc) |
Paper Type: | Journal |
Eprint: | arXiv 2309.02976 |
URL: | https://arxiv.org/abs/2309.02976 |
BibTex @misc{schumacher2024:NaturalAndRobustWalking, title = {Natural and Robust Walking using Reinforcement Learning without Demonstrations in High-Dimensional Musculoskeletal Models}, year = {2024}, doi = {}, eprint = {arXiv 2309.02976}, url = {https://arxiv.org/abs/2309.02976} } |