Back
Sample-efficient Cross-Entropy Method for Real-time Planning
Trajectory optimizers for model-based reinforcement learning, such as the Cross-Entropy Method (CEM), can yield compelling results even in high-dimensional control tasks and sparse-reward environments. However, their sampling inefficiency prevents them from being used for real-time planning and control. We propose an improved version of the CEM algorithm for fast planning, with novel additions including temporally-correlated actions and memory, requiring 2.7-22x less samples and yielding a performance increase of 1.2-10x in high-dimensional control problems.
@inproceedings{PinneriEtAl2020:iCEM, title = {Sample-efficient Cross-Entropy Method for Real-time Planning}, booktitle = {Conference on Robot Learning 2020}, abstract = {Trajectory optimizers for model-based reinforcement learning, such as the Cross-Entropy Method (CEM), can yield compelling results even in high-dimensional control tasks and sparse-reward environments. However, their sampling inefficiency prevents them from being used for real-time planning and control. We propose an improved version of the CEM algorithm for fast planning, with novel additions including temporally-correlated actions and memory, requiring 2.7-22x less samples and yielding a performance increase of 1.2-10x in high-dimensional control problems.}, year = {2020}, slug = {pinnerietal2020-icem}, author = {Pinneri, Cristina and Sawant, Shambhuraj and Blaes, Sebastian and Achterhold, Jan and Stueckler, Joerg and Rolinek, Michal and Martius, Georg}, url = {https://corlconf.github.io/corl2020/paper_217/ } }